Áp dụng BĐT Cauchy , ta có :
\(\sqrt{x}+\sqrt{x}+\dfrac{1}{x}\ge3\sqrt[3]{\sqrt{x}.\sqrt{x}.\dfrac{1}{x}}=3\)
\(\sqrt{y}+\sqrt{y}+\dfrac{1}{y}\ge3\sqrt[3]{\sqrt{y}.\sqrt{y}.\dfrac{1}{y}}=3\)
\(\Rightarrow2\left(\sqrt{x}+\sqrt{y}\right)+\dfrac{1}{x}+\dfrac{1}{y}\ge6\)
\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y}\right)\ge4\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge2\)
\(\Rightarrow A_{Min}=2."="\Leftrightarrow x=y=1\)