\(x+\sqrt{3}=2\Rightarrow x^2-4x=7-4\sqrt{3}-8+4\sqrt{3}=-1\)
\(\Rightarrow B=1+9+2020\)
\(=2030\)
\(x+\sqrt{3}=2\Rightarrow x^2-4x=7-4\sqrt{3}-8+4\sqrt{3}=-1\)
\(\Rightarrow B=1+9+2020\)
\(=2030\)
Cho \(x=\dfrac{2}{\sqrt{5}+1}\). Tính giá trị biểu thức:
M\(=2019\left(x^2+x-2\right)^{2018}+2018\left(4x^4-6x^2+6x-3\right)^{2019}\)
Help me!!!
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^2+xy+y^2+15\)
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^4+xy+y^2+15\)
giải phương trình : \(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2029}-1}{z-2020}=\frac{3}{4}\)
tìm nghiệm nguyên của pt : \(2x^2+4x=19-3y^2\)
cm với mọi số tự nhiên n thì : \(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
Cho \(x+\sqrt{3}=2\) tính
\(A=7\left(x^2-4x\right)^{10}+\left(x^2-4x\right)^{15}+2019\)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Mọi người giúp mk bài này với, nếu đề bài sai thì bảo mình 1 câu nha! Cám ơn các bn nhìu!!!
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^2+xy+y^2+15\)
Cho \(x=\dfrac{\sqrt[3]{26+15\sqrt{3}}.\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}\). Tính giá trị của biểu thức: \(M=\left(3x^3-x^2-1\right)^{2021}\)