\(A=\frac{\left(x+1\right)^2+6}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{3}{x+1}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}=\sqrt{6}\)
\(A_{min}=\sqrt{6}\) khi \(x=-1+\sqrt{6}\)
\(A=\frac{\left(x+1\right)^2+6}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{3}{x+1}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}=\sqrt{6}\)
\(A_{min}=\sqrt{6}\) khi \(x=-1+\sqrt{6}\)
1/CMR
a/\(x^4-2x^3+2x^2-2x+1\ge0\forall x\in R\)
b/cho \(a\ge0,b\ge2,a+b+c=3\). CMR : \(a^2+b^2+c^2\le5\)
c/cho a,b,c >0 . CMR : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\ge4\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
2/ cho \(x,y\ge0,x+y=1\). tìm GTLN,GTNN của A =\(x^2+y^2\)
3/ cho x,y>0 .tìm GTNN của B= \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho \(x,y,z>0\)và \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Tìm GTNN của \(P=\frac{y^2x^2}{x\left(y^2+x^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
cho x,y,z≥0 thỏa mãn x+y+z=3
Tìm GTNN của P=\(\frac{\left(y+z\right)^2}{x}\)+\(\frac{\left(z+x\right)^2}{y}\)+\(\frac{\left(x+y\right)^2}{z}\)
Tìm tập nghiệm của bất phương trình
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) \(\dfrac{\left(x-1\right)\left(2x-5\right)\left(x+1\right)}{x+4}< 0\)
Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Rút gọn P
b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4
Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1
a) Rút gọn A
b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt GTNN
Bài 3: Cho biểu thức: \(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\) vs x ≥ 0, x ≠ 1
a) Rút gọn P
b) Tìm giá trị của x để P = \(\frac{3}{4}\)
c) Tìm GTNN của biểu thức A = \(\left(\sqrt{x}-4\right)\left(x-1\right).P\)
Bài 4: Cho biểu thức: \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\); vs x ≥ 0, x ≠ 1
a) Rút gọn A
b) Tìm x để \(\frac{1}{A}\) là 1 số tự nhiên
Cho x>0, y>0 thỏa mãn: \(\left(\sqrt{2x}+1\right)\left(\sqrt{2y}+1\right)\ge9\)
Tìm GTNN của P= \(\frac{x^2+1}{y}+\frac{y^2+1}{x}\)
cho \(x\ge\sqrt{15}\). tìm GTNN của \(F=x^2+x-\sqrt{\left(x^2-15\right)\left(x-3\right)}-\sqrt{x^2-15}-\sqrt{x-3}-38\)
Tìm GTNN của \(\frac{x^2+2x+17}{2\left(x+1\right)}\) (x>=0)