Đặt \(P=x+y\Rightarrow P^2=\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\)
\(\Rightarrow-2\sqrt{2}\le P\le2\sqrt{2}\)
\(P_{min}=-2\sqrt{2}\) khi \(x=y=-\sqrt{2}\)
\(P_{max}=2\sqrt{2}\) khi \(x=y=\sqrt{2}\)
Đặt \(P=x+y\Rightarrow P^2=\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\)
\(\Rightarrow-2\sqrt{2}\le P\le2\sqrt{2}\)
\(P_{min}=-2\sqrt{2}\) khi \(x=y=-\sqrt{2}\)
\(P_{max}=2\sqrt{2}\) khi \(x=y=\sqrt{2}\)
Cho 2 số thực x ; y thỏa mãn 0 < x ≤ 1 , 0 < y ≤ 1 và x + y = 3xy . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x2 + y2 - 4xy
là số nguyên tố
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
Cho hệ phương trình
kx+y=7
2x-y=-4
Gọi x, y là nghiệm của phương trình.xác định giá trị của K để p=x2 +y2 đạt gia trị nhỏ nhất
Ae giúp mik nhé mik cần gấp
tìm giá trị lớn nhất của M=\(\dfrac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
Cho x,y là số thực dương thỏa mãn:x+y\(\le1\)
Tìm giá trị nhỏ nhất của biểu thức:A=\(\dfrac{1}{x^2+y^2}+\dfrac{4}{xy}+8xy\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức:
\(P=\dfrac{12x^2+12x+18}{x^2-2x+3}\)