Biểu thức này ko tồn tại max, chỉ tồn tại min
\(A=2x+2x+\frac{3}{x^2}\ge3\sqrt[3]{\frac{12x^2}{x^2}}=3\sqrt[3]{12}\)
Dấu "=" xảy ra khi \(2x=\frac{3}{x^2}\Leftrightarrow x=\sqrt[3]{\frac{3}{2}}\)
Biểu thức này ko tồn tại max, chỉ tồn tại min
\(A=2x+2x+\frac{3}{x^2}\ge3\sqrt[3]{\frac{12x^2}{x^2}}=3\sqrt[3]{12}\)
Dấu "=" xảy ra khi \(2x=\frac{3}{x^2}\Leftrightarrow x=\sqrt[3]{\frac{3}{2}}\)
Tìm Max A biết A= \(\sqrt{4x-x^3}+\sqrt{x+x^3}\left(0\le x\le2\right)\)
tìm min,max của \(A=\frac{4x+3}{x^2+1}\) và Max \(B=\frac{4Y^2}{X^2-2XY+3Y^2}\)
Cho x>0.
1. Tìm max \(B=x+\frac{4}{x^2}\)
2. Tìm max \(C=x^2+\frac{2}{x}\)
3. Tìm max D= \(9x^2+\frac{4}{3x}\)
1. tìm max, min : a) \(B=\frac{x-y}{x^4+y^4+6}\)
b) \(C=\frac{2x+3y}{2x+y+3}\) với \(4x^2+y^2=1\)
c) \(P=\frac{x+y}{x^2-xy+y^2}\) với \(1\le x,y\le2\)
2. Cho biểu thức \(A=\frac{a^3+b^3+c^3}{abc}\) với \(1\le a\le b\le c\le2\)
a) Cmr: \(A\le\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}\) b) Tìm Max A
1, Cho x > 0, y > 0, x + y \(\le\)1
Tìm MinA = \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
2, Tìm Min và max của P = \(\frac{x^2+1}{x^2-x+1}\)
3, Cho (x + y)2 + 7(x + y) +y2 + 10 = 0
Tìm min, Max của P = x + y + 1
4, Cho x > 0, y > 0 và x + y \(\le\)1
CMR : \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
Cho biểu thức: P = \(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
a) Rút gọn P
b) Tìm x để P < 0; P > 0
Cho a,b,c>0 thỏa a+b+c=3. Tìm Max P \(\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6} +\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho x,y,z>0 thỏa \(3x+y+z=x^2+y^2+z^2+2xy\) . Tìm Min P= \(\frac{20}{\sqrt{x+2}}+\frac{20}{\sqrt{y+2}}+x+y+z\)
Cho x,y,z >0 / x^2 +y^2 +z^3 =3.,
Tìm max P= x/ (x^2 +2y+3) + y/(y^2 +2z+3) +z/(z^2 + 2x +3)
tìm đkxđ và rút gọn p
tìm max m=p-x+ 3
tìm min A =P+1/\(\sqrt{x}\)+3
p=(\(\frac{\sqrt{x}}{\sqrt{x-2}}+\frac{\sqrt{x}}{\sqrt{x+2}}\))\(\frac{x-4}{\sqrt{4x}}\)