x - y = 9 => x = 9 + y . Thay B ta có :
\(B=\frac{4\left(9+y\right)-9}{3\left(9+y\right)+y}-\frac{4y+9}{3y+9+y}=\frac{36+4y-9}{27+3y+y}-\frac{4y+9}{4y+9}=\frac{27+4y}{27+4y}-\frac{4y+9}{4y+9}=1-1=0\)
Vậy B = 0
x - y = 9 => x = 9 + y . Thay B ta có :
\(B=\frac{4\left(9+y\right)-9}{3\left(9+y\right)+y}-\frac{4y+9}{3y+9+y}=\frac{36+4y-9}{27+3y+y}-\frac{4y+9}{4y+9}=\frac{27+4y}{27+4y}-\frac{4y+9}{4y+9}=1-1=0\)
Vậy B = 0
Cho biểu thức \(P=\frac{7x^2+3y^2}{14x^2-3y^2}\) với x \(\ne\) 0; y \(\ne\) 0. Giá trị của biểu thức P với \(\frac{x}{2}=\frac{y}{4}\) bằng
Cho tỉ lệ thức: \(\frac{5x-2y}{x+3y}=\frac{7}{4}\) (với x + 3y \(\ne\) 0). Tính giá trị của tỉ số \(\frac{x}{y}\) \(\left(y\ne0\right)\)
Bài 1: Tính giá trị biểu thức:
\(\frac{x-8}{y-5}-\frac{4x-y}{3x+3}\) với x-y=3 \(\left(y\ne5;x\ne-1\right)\)
Cho \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\). Tính giá trị của biểu thức A= \(\frac{2x+3y+4z}{3x+4y+5z}\) ( Giả thiết biểu thức A có nghĩa)
a)Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)và 3x-2y+z=40.Tìm x,y,z
b)Tìm x,y biết \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Giúp mik với!help me~~~
1. Cho \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\) và x + y + z = 48. Tìm x;y;z
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\). Chứng minh rằng \(\frac{5x-2y}{2018}=\frac{6y-5z}{2019}=\frac{4z-12y}{2020}\)
Cho biểu thức \(P=\frac{7x^2+3y^2}{14x^2-3y^2}\) với x, y khác 0. Giá trị của biểu thức P với \(\frac{x}{2}=\frac{y}{4}\) là ?
Cho x và y thỏa mãn x-y=9,6x+y\(\ne\)0 và 8x-y\(\ne\)0. Khi đó giá trị của biểu thức B=\(\dfrac{7x-9}{6x+y}\)+\(\dfrac{7x+9}{8x-y}\) bằng...
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)