ta có : \(x^3+y^3+3xy\left(x^3+y^3\right)+6x^2y^2\left(x+y\right)\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)+6x^2y^2\left(x+y\right)\)
\(=\left(1\right)^3-3xy.\left(1\right)+3xy\left(\left(1\right)^3-3xy.\left(1\right)\right)+6x^2y^2.\left(1\right)\)
\(=1-3xy+3xy\left(1-3xy\right)+6x^2y^2\)
\(=1-3xy+3xy-9x^2y^2+6x^2y^2=1-3x^2y^2\)
vậy \(x^3+y^3+3xy\left(x^3+y^3\right)+6x^2y^2\left(x+y\right)=1-3x^2y^2\) khi \(x+y=1\)