Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\). Tính giá trị của biểu thức: \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
cho x< y < z và \(\dfrac{x^2+y^2}{xy}=\dfrac{25}{12}\). Tính giá trị của biểu thức A= \(\dfrac{x-y}{x+y}\)
Tính giá trị của biểu thức \(A=\dfrac{x-y}{x+y}\), biết: \(x^2-2y^2=xy\) (y\(\ne0\); \(x+y\ne0\))
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
Cho biểu thức :
P = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\) ( với x khác \(\)y )
Gía trị của biểu thức P khi x + y = 5 và xy = -\(\dfrac{1}{2}\)
Tìm điều kiện của và y để biểu thức sau có giá trị dương: \(A=\left(\dfrac{x^2-xy}{y^2+xy}+\dfrac{x^2-y}{x^2+xy}\right):\left(\dfrac{y^2}{x^2-xy^2}+\dfrac{1}{x-y}\right)\)
Cho \(x^2+y^2=\dfrac{50}{7}xy\) với y>x>0 . Giá trị của biểu thức \(P=\dfrac{x-y}{x+y}\) .. là
1. Tìm GTNN của \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}-\dfrac{x^2-2}{x^2-x}\right)\) khi x>1
2. Cho biểu thức: \(B=\dfrac{2}{x}-\left(\dfrac{x^2}{x^2-xy}+\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y^2-xy}\right):\dfrac{x^2-xy+y^2}{x-y}\)
a. Rút gọn B
b. Tìm giá trị của B với |2x-1|=1 và |y+1|=1/2