1.Gía trị lớn nhất của hàm số y+x^3-10x^2+25x-4 trên [ 0;5]
2.Hệ{2x-1>=0 và 3x +m<=0 có nghiệm khi nào
3.CHO A,B >0 THỎA A+B<=1 .GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC P+A+B+1/A+/B
4.CHO X>0.HÀM SỐ Y=2X+3/X ĐẠT GIÁ TRỊ NHỎ NHẤT TẠI X
1) Cho x, y, z là những số dương. Chứng minh rằng:
√x2 + xy + y2 + √y2 + yz + z2 + √z2 + zx + x2 ≥ (x + y + z)* √3
2) Cho a + b ≥ 0, chứng minh rằng:
(a + b)(a3 + b3)(a5 + b5) ≤ 4(a9 + b9)
Cho các số thực x,y thỏa mãn: \(\dfrac{x^2+y^2}{2}=y-2x\). Chứng minh rằng:
\(\left|\sqrt{2-2x}-\sqrt{4x+6y+20}\right|=3\sqrt{2}\)
Cho x, y, z là những số thực tùy ý.
Chứng minh rằng :
\(x^2+4y^2+3z^2+14>2x+12y+6z\)
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
giải giúp mấy bài sau nha mn
thanks nhiều
1. Tìm nghiệm nguyên của pt:
a) \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
b) \(12x^2+6xy+3y^2=28\left(x+y\right)\)
2. Cho x,y,z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\)
C/m: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}=< 1\)
3. Cho a,b,c>0 và abc=1
C/m: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}>=\dfrac{3}{2}\)
4. Cho x,y>0 và x + y >= 2
Tìm GTNN của biểu thức \(A=4\left(x+y\right)+\dfrac{1}{x+1}+\dfrac{1}{y+1}+1\)
Cho \(\sin x+\cos x=m\). Tính theo m các biểu thức sau:
1) \(A=\sin^2x+\cos^2x\)
2) \(B=\sin^3x+\cos^3x\)
3) \(C=\sin^4x+\cos^4x\)
4) \(D=\sin^6x+\cos^6x\)
cho x,y,z > 0. Cmr: \(\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
Cho x,y,z >0. Chứng minh \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\) ≥ x2 + y2 + z2