Cho hình vuông ABCD với tâm O . Gọi E là trung điểm BC , các điểm F,G lần lượt thuộc các cạnh CD,AD sao cho EF // với BG
a/ Chứng minh tam giác AOG đồng dạng với tam giác CFO
b) Chứng minh rằng ba đường thẳng AC,BF,EG đồng quy
Cho hình bình hành ABCD. Gọi E,F,G,K lần lượt là trung điểm của cạnh AB,BC,CD,DA. Tính diện tích đa giác là phần chung của tứ giác AGCF,BGDK,CEAK,DEBF theo diện tích của hình bình hành ABCD. ( Theo ứng dụng của tỉ số diện tích trong tam giác)
Cho hình chữ nhật ABCD với AB=a; AD=b. Trên các cạnh AD,AB,BC,CD lần luwotj lấy các điểm E,F,G,H sao cho luôn tạo thành tứ giác EFGH. Gọi P là chu vi tứ giác EFGH . Chứng minh \(P\ge2\sqrt{a^2+b^2}\)
cho tam giác ACD vuông tại A (AC<AD), đường cao AB. Đường tròn (O), đường kính AB cắt các cạnh AC và AD lần lượt tại M và N. Gọi I là trung điểm CD
1) Chứng minh tứ giác AMBN là hình chữ nhật
2)Chứng minh tứ giác CDNM nội tiếp
3)Gọi giao điểm của MN và CD là K, đường thẳng KA cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh KE.KA=KC.KD và EC⊥ED
4)Lấy F đối xứng với A qua I.Gọi Q là tâm đường tròn ngoại tiếp tứ giác CDNM. Chứng minh B,F,Q là 3 điểm thẳng hàng
Cho hình vuông ABCD, đường tròn (O) nội tiếp hình vuông ABCD tiếp xúc với các cạnh AB,AD lần lượt tại các điểm E,F. Gọi giao điểm của CE và BF là G
a/Chứng minh rằng 5 điểm A,F,O,G,E cùng nằm trên một đường tròn
b/Gọi giao điểm của FB và đường tròn (O) là M (M khác F). Chứng minh rằng M là trung điểm của đoạn thẳng BG
c/Chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O)
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.
Cho tứ giác lồi ABCD. GIẢ SỬ E LÀ ĐIỂM ĐỂ TỨ GIÁC ABDE LÀ HÌNH BÌNH HÀNH. CHỨNG MINH TỨ GIÁC ABCD VÀ TAM GIÁC ACE CÓ DIÊN TÍCH BẰNG NHAU
Cho tứ giác ABCD . Gọi M , N , P , Q , E , F lần lượt là trung điểm của BD , AC , AB , DC , AD và BC
a, CMR : PM = NQ
b, CMR : MN , PQ và EF đồng quy
Cho hình chữ nhật ABCD có AB=\(\dfrac{3}{2}AD\) .E thuộc BC, AE cắt DC tại F . trên AB,CD lần lượt lấy M,N ssao cho MN vuông góc với Ae, đường phân giác góc DAE cắt CD tại P chứng minh MN=\(\dfrac{2}{3}BE+DP\)