Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC a/ Chứng minh tứ giác OHDE nội tiếp b/ Chứng minh ED^2=EC.EB c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC.
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh \(ED^2=EC.EB\)
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M và N. Chứng minh DM=DN
Cho (O;R) đường kính AB và điểm C∈O sao cho AC < AB. Tiếp tuyến tại C cắt các tiếp tuyến tại A và B lần lượt tại E và F
a)Chứng minh tứ giác AECO nội tiếp
b)Gọi H là giao điểm của EO và AC. Chứng minh:OH.OE=R2
c) BC cắt AE tại D, OD cắt AC tại I, tia DH cắt AB tại K. Gọi P là điểm đối xứng của H qua E. Chứng minh rằng: HCDP là hình chữ nhật và \(IK//AD\)
d)Gọi M là giao điểm của IK và EO. Chứng minh: ba điểm A, M, F thẳng hàng
cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R).Vẽ BD vuông AC tại D vẽ CE vuông AB tại E.BD và CE cắt nhau tại H.Vẽ đường kính AOK a)Chứng minh tứ giác BHCK là hình bình hành b)Chứng minh tứ giác BCDE nội tiếp đường tròn tâm I.Xác định vị trí điểm I c)chứng minh DE vuông AK d)Cho BAK=60.Tính theo R độ dài AH
cho (O, R), lấy điểm O cách A một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K
a, Chứng minh: Tam giác OKA cân tại K
b, Đường thẳng KI cắt AB tại M. Chứng minh: KM là tiếp tuyến của đường tròn (O)
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)
Bài 1 : Cho tam giác ABC cân tại A ( có AB > BC ) nội tiếp đường tròn ( O , R ) . Tiếp tuyến tại B , C lần lượt cắt tia AC , AB tại D , E . Gọi I là giao điểm của BD và CE a ) CM :Ba điểm I,O, A thẳng hàng. b) CM: góc EBD = góc ECD . c ) Cho góc BAC = 45. Tính diện tích tam giác ABC theo R .
Bài 2 : Từ một điểm A nằm ở ngoài đường tròn ( O ; R ) . Vẽ hai tiếp tuyến AB , AC với đường tròn ( B , C là các tiếp điểm ) . Vẽ dây BD vuông góc với BC . Đường vuông góc với DO tại O cắt tia DB tại E . Chứng minh tứ giác AOBE là hình thang cân .
Bài 3 : Cho đường tròn ( O ) đường kính AB .Lấy điểm M trên đường tròn ( M khác A ; B ) .Tiếp tuyến tại M cắt tiếp tuyến tại A ở D , cắt tiếp tuyến tại B ở C, AC cắt BD tại E . Chứng minh ME vuông góc với AB .
Bài 4 : Cho đường tròn ( O ; R ) và điểm A ở ngoài đường tròn với OA = 2R . Từ A vẽ hai tiếp tuyến AB và AC với đường tròn ( O ) . a ) Bốn điểm A , B , O , C cùng thuộc một đường tròn . b ) CM : Tam giác ABC đều . c ) Vẽ đường kính BOD. CMR: DC song song OA . d ) Đường trung trực của BD cắt AC tại S . Gọi I là trung điểm của OA . CMR SI là tiếp tuyến của đường tròn ( O ) .
Bài 5 : Cho đường tròn ( O ; R ) đường kính AB . Vẽ dây CD vuông góc với AB tại trung điểm K của OB . a ) CM Tứ giác OCBD là hình thoi . b ) Đường tròn tâm I đường kính OA cắt AC tại E . CMR : Ba điểm D, O , E thẳng hàng . c ) Tinh KE: biết R = 12 cm . | d ) CMR: KE là tiếp tuyến của đường tròn (I ) .
Cho (O;R) và dây AB. Các tiếp tuyến tại A và B, của (O) cắt nhau tại C. a) C/m: Tứ giác ACBO nội tiếp. b) Lấy điểm I trên đoạn AB ( IB < IA). Từ điểm I kẻ đường thẳng vuông góc với OI cắt AC tại E và cắt đường thẳng BC tại D. C/m: góc IBO = góc IDO. c) C/m: OE = OD. d) C/m: Cho góc AOB = 120°. Tính độ dài đoạn thẳng OE khi OI = 2R/3