1) Xét tam giác ABC có:
M là trung điểm của AB( gt)
N là trung điểm của BC( gt)
=> MN là đường trung bình của tam giác ABC
=> \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
Q là trung điểm của AD( gt)
P là trung điểm của DC( gt)
=> PQ là đường trung bình của tam giác ADC
=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)
b) Xét tam giác ABD có:
M là trung điểm của AB (gt)
F là trung điểm của BD(gt)
=> MF là đường trung bình của tam giác ABD
=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)
CMTT => EP là đường trung bình của tam giác ADC
=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)
Từ (3),(4) => Tứ giác MEPF là hình bình hành
c) Ta có: MN là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)
Ta có: PQ là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)
Từ (5),(6) => Tứ giác MNPQ là hình bình hành
=> MP cắt PQ tại trung điểm của MP(t/c)
Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)
=> MP,NQ,EF đồng quy
1: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của DC
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra MN=QP
2: Xét ΔABC có
M là trung điểm của AB
E là trung điểm của AC
Do đó: ME là đường trung bình của ΔBAC
Suy ra: ME//BC và \(ME=\dfrac{BC}{2}\left(3\right)\)
Xét ΔBDC có
F là trung điểm của BD
P là trung điểm của DC
Do đó: FP là đường trung bình của ΔBDC
Suy ra: FP//BC và \(FP=\dfrac{BC}{2}\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\) suy ra FP//ME và FP=ME
hay MEPF là hình bình hành
3: Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
Suy ra: Hai đường chéo MP và NQ cắt nhau tại trung điểm của mỗi đường
mà MP và EF cắt nhau tại trung điểm của mỗi đường
nên MP,NQ,EF đồng quy