cho tứ giác ABCD có AC = BD, Gọi M, N , P, Q lần lượt là trung điểm của AB, BC, CD, DA
1) MN=NP=PQ=QM
2) CM MNPQ là hình thoi
Cho hình vuông ABCD. Gọi I, K theo thứ tự là trung điểm của các cạnh AB, CD. Nối CI, AK. CMR: a) Tứ giác AICK là hình bình hành. b) Gọi M là trung điểm của BC. Gọi P, Q lần lượt là giao điểm của DM với IC và AK. CMR: DM = AK và DM vuông AK
Cho tứ giác ABCD có AD = BC. Gọi M,N lần lượt là trung điểm của AC và BD; MN cắt AD, BC lần lượt tại I,K. CMR góc AIM = góc BKN
Cho hình bình hành ABCD. Gọi o là giao điểm hai đường thẳng ac và bd. Qua điểm O vẽ đường thẳng song song với AB cắt hai cạnh AD, BC lần lượt tại M, N. Trên AB, CD lần lượt lấy các điểm P, Q sao cho AP = CQ. Chứng minh:
a) Các tứ giác AMNB, APCQ là hình bình hành
b) MP // NQ; MQ = NP
Cho tứ giác ABCD có AD = BC. Gọi M, N lần lượt là trung điểm của AB và CD. Tia MN cắt AD tại E. Tia MN cắt BC tại F. Tia AD cắt BC tại I. C/m Δ EIF cân.
Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Cho tứ giác ABCD có AD = BC. Gọi M,N lần lượt là trung điểm của AC và BD; MN cắt AD, BC lần lượt tại I,K. CMR góc AIM = góc BKN
Giúp mk vs mn ơi ! Cần lắm lun ík !!!
3) Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.a) Chứng minh: AMNC là hình thang, tính AC, biết MN = 3cm.b) Chứng minh: PQ ∥AC.c) Chứng minh: MN ∥PQ và MN = PQ.d) MQ = NP và MQ ∥NP.