Gọi MM là trung điểm của CD.
Ta có CD→.AM→=0→ và CD→.MB→=0→.
Do đó →CD.→AB=→CD.(→AM+→MB)=→CD.→AM+→CD.→MB=⃗0
Suy ra AB⊥CD nên số đo góc giữa hai đường thẳng AB và CD bằng 900.
Gọi MM là trung điểm của CD.
Ta có CD→.AM→=0→ và CD→.MB→=0→.
Do đó →CD.→AB=→CD.(→AM+→MB)=→CD.→AM+→CD.→MB=⃗0
Suy ra AB⊥CD nên số đo góc giữa hai đường thẳng AB và CD bằng 900.
Cho tứ diện đều ABCD. Gọi M,N,P lần lượt là trung điểm AB,CB,AD, G là trọng tâm tam giác BCD. Tính góc giữa \(\overrightarrow{MG}\) và \(\overrightarrow{NP}\)
cho tứ diện đều abcd có cạnh bằng a. tính \(\overrightarrow{AB}.\overrightarrow{BD}\)
Cho hình tứ diện ABCD. Hãy xác định hai điểm E, F sao cho :
a) \(\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)
b) \(\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AD}\)
Cho hình tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng :
a) \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\)
b) \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a; AD= \(a\sqrt{3}\). Hai tam giác SAB và SAD vuông tại S. Tìm vecto vuông góc \(\overrightarrow{SA}\) ?
Cho tứ diện đều ABCD có các cạnh bằng a , M là trung điểm AB . Tích vô hướng \(\overrightarrow{CM}.\overrightarrow{DM}\)bằng:
Cho tứ diện đều ABCD có các cạnh bằng a, với I và J lần lượt là trung điểm của AB và CD. Tích vô hướng \(\overrightarrow{CI}.\overrightarrow{AJ}\) bằng:
Cho tứ diện ABCD có M, P lần lượt là trung điểm của AB, CD. Gọi N là điểm thuộc BC sao cho BN=3NC, điểm Q thuộc AD sao cho AQ=\(x\)QD. (\(0< x< 1\))
a) Tính \(\overrightarrow{MN}\), \(\overrightarrow{MP}\), \(\overrightarrow{MQ}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\), \(\overrightarrow{AD}\).
b) Tìm \(x\) để M, N, P, Q đồng phẳng.
Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn thẳng MN và P là một điểm bất kì trong không gian. Chứng minh :
a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
b) \(\overrightarrow{PI}=\dfrac{1}{4}\left(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}\right)\)