giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.
1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).
2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm cạnh AB, CD, E là điểm chia BC theo tỉ số BE/BC=1/2. Trên đoạn thẳng AM lấy điểm H. Tìm giao tuyến của mặt phẳng (P) đi qua H và song song với mặt phẳng (MNE). Tìm giáo tuyến của mặt phẳng (P) và mặt phẳng (BCD); mặt phẳng (P) và mặt phẳng (ABD)
Cho tứ diện đều ABCD cạnh a, G là trọng tâm tam giác BDC. Mặt phẳng qua A, G và song song với BC cắt DB và DC lần lượt tại M và N. Tính diện tích tam giác AMN
Cho tứ diện ABCD Gọi M N lần lượt là trung điểm của các cạnh BC và AC Trên cạnh BP lấy điểm P sao cho DP=2PB
a) xác định giao tuyến của mặt phẳng (MNP )và mặt phẳng (ABD) b) trên cạnh AD lấy điểm Q sao cho DQ=2QA. Chứng minh PQ song song với mặt phẳng (ABC)Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm cạnh SA và (a) là mặt phẳng chứa OM song song với AD. Gọi N,P,Q lần lượt là giao điểm của (a) với các cạnh SD, CD và AB.
1/ Thiết diện của (a) với hình chóp là gì?
2/ Chứng minh SB // (a).
3/ Giả sử SBC là tam giác đều. Tính số đo các góc của tứ giác MNPQ.
Cho tứ diện đều ABCD cạnh bằng a. Gọi M là trung điểm của cạnh BC. Cắt tứ diện bởi mặt phẳng đi qua điểm M và song song với hai đường thẳng ,ABCD thì được thiết diện có diện tích là Đáp án là a2/4 nha
Cho hình vuông ABCD cạnh a tâm O. Gọi S là một điểm ở ngoài mặt phẳng ( ABCD ) sao cho SB=SD. Gọi M là điểm tùy ý trên AO với AM=x. Mặt phẳng alpha qua M song song với SA và BD cắt SO, SB, AB tại N, P, Q.
a) Tứ giác MNPQ là hình gì
b) Cho SA = a. Tính diện tích MNPQ theo a và x.
Cho tứ diện ABCD. Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABC, ACD, ADB. M là điểm di động bên trong tứ diện sao cho \(G_1M\) luôn song song với mặt phẳng (ACD). Tìm tập hợp những điểm M
Cho tứ diện ABCD. Gọi \(G_1,G_2,G_3\) lần lượt là trọng tâm các tam giác ABC, ACD, ADB. M là điểm di động bên trong tứ diện sao cho GM luôn song song với mặt phẳng (ACD). Tìm tập hợp những điểm M