giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.
1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).
2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
Cho tứ diện ABCD. Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABC, ACD, ADB. M là điểm di động bên trong tứ diện sao cho \(G_1M\) luôn song song với mặt phẳng (ACD). Tìm tập hợp những điểm M
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB và CD. G là trọng tâm của tam giác BCD. Tìm giao điểm của EG với (ACD)
Cho tứ diện ABCD. Lấy điểm S nằm ngoài mặt phẳng (ABCD). Gọi lần lượt G1, G2 là trọng tâm của tam giác SAB và tam giác SBD Chứng minh BD song song với mặt phẳng (SG1G2)
Cho tứ diện ABCD. Gọi G1, G2 là trọng tâm của tam giác BCD và ACD.
a, Chứng minh AG1 và BG2 cắt nhau. Gọi I là giao điểm . Tính các tỉ số \(\frac{AI}{IG_1};\frac{BI}{IG_2}\)
b, Chứng minh I là đoạn nối các trung điểm AB và CD.
Cho tứ diện ABCD. I và J theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GID) và (BCD). Tìm thiết diện của mặt phẳng (GIJ) với hình chóp ABCD. Thiết diện là hình gì
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G1,G2 lần lượt là trọng tâm của ΔABC và ΔSBC. Giao tuyến giữa ( BG1G2 ) và (SAC) chia ΔSAC thành hai phần có tỉ số diện tích là bao nhiêu?
Cho tứ diện ABCD , cho điểm I thuộc AB, K nằm trong tam giác ACD, M thuộc CD, J thuộc BM IJ không song song AM . Tìm giao tuyến của (IJK)và (ACD), (IJK) và (ABD)
Chỉ câu d thoi ạ Cho tứ diện ABCD. Gọi I và K lần lượt là trung điểm của AB và CD. J là một điểm trên đoạn AD sao cho AD = 3JD.a) Tìm giao điểm F của đường thẳng AC và mặt phẳng BCD b) Tìm giao tuyến d của hai mặt phẳng IJK và ABC. c) chứng minh AC, KJ và d đồng quy d) Gọi O là trung điểm IK và G là trọng tâm tam giác BCD. Chứng minh A,O,G thẳng hàng.