Đặt \(\overrightarrow{DA}=\overrightarrow{a},\overrightarrow{DB}=\overrightarrow{b},\overrightarrow{DC}=\overrightarrow{c}\) và \(\left|\overrightarrow{a}\right|=\overrightarrow{a},\left|\overrightarrow{b}\right|=\overrightarrow{b},\left|\overrightarrow{c}\right|=\overrightarrow{c}\)
Đặt tiếp \(\widehat{BDC}=\alpha,\widehat{CDA}=\beta,\widehat{ADB}=\gamma\)
Từ giả thiết suy ra EIHF là hình bình hành. Nhưng EH = FI nên đó là hình chữ nhật
Suy ra : \(EF\perp EI\Rightarrow\overrightarrow{AB}.\overrightarrow{DC}=0\)
\(\Rightarrow\left(\overrightarrow{b}-\overrightarrow{a}\right).\overrightarrow{c}=0\)
\(\Rightarrow\overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}\) (1)
Hoàn toàn tương tự cũng được
\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}\) (2)
Từ (1) và (2) suy ra
\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}\)
\(\Leftrightarrow a.b\cos\gamma=b.c\cos\alpha=c.a\cos\beta\)
\(\Leftrightarrow\frac{a}{\cos\alpha}=\frac{b}{\cos\beta}=\frac{c}{\cos\gamma}\)
=> Điều cần chứng minh