Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Tuyết Mai

Cho tứ diện ABCD. Gọi E, F,G lần lượt là trung điểm các cạnh DA, DB, DC và H, I, K tương ứng là trung điểm BC, CA, AB. Biết rằng EH=FI=GK. Chứng minh rằng :

\(\frac{DA}{\cos\widehat{BDC}}=\frac{DB}{\cos\widehat{CDA}}=\frac{DC}{\cos\widehat{ADB}}\)

Nguyễn Đức Trung
23 tháng 3 2016 lúc 10:59

A B C D E H I F a b c

Nguyễn Đức Trung
23 tháng 3 2016 lúc 11:40

Đặt \(\overrightarrow{DA}=\overrightarrow{a},\overrightarrow{DB}=\overrightarrow{b},\overrightarrow{DC}=\overrightarrow{c}\) và \(\left|\overrightarrow{a}\right|=\overrightarrow{a},\left|\overrightarrow{b}\right|=\overrightarrow{b},\left|\overrightarrow{c}\right|=\overrightarrow{c}\)

Đặt tiếp \(\widehat{BDC}=\alpha,\widehat{CDA}=\beta,\widehat{ADB}=\gamma\)

Từ giả thiết suy ra EIHF là hình bình hành. Nhưng EH = FI nên đó là hình chữ nhật

Suy ra : \(EF\perp EI\Rightarrow\overrightarrow{AB}.\overrightarrow{DC}=0\)

                             \(\Rightarrow\left(\overrightarrow{b}-\overrightarrow{a}\right).\overrightarrow{c}=0\)

                             \(\Rightarrow\overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}\) (1)

Hoàn toàn tương tự cũng được 

 \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}\) (2)

Từ (1) và (2) suy ra 

\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}\)

\(\Leftrightarrow a.b\cos\gamma=b.c\cos\alpha=c.a\cos\beta\)

\(\Leftrightarrow\frac{a}{\cos\alpha}=\frac{b}{\cos\beta}=\frac{c}{\cos\gamma}\)

=> Điều cần chứng minh


Các câu hỏi tương tự
Nguyễn Thùy Chi
Xem chi tiết
Trần Minh Ngọc
Xem chi tiết
Trần Thị Hoài Nhung
Xem chi tiết
Đặng Minh Quân
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Ngô Vịnh
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết