a: \(SA=\sqrt{\left(\dfrac{a}{2}\right)^2\cdot2}=\sqrt{2}\cdot\dfrac{a}{\sqrt{2}}=a\)
\(SB=SA=a\)
AH=a/2; AD=a; góc A=120 độ
=>\(cosA=\dfrac{\dfrac{1}{4}a^2+a^2-DH^2}{2\cdot\dfrac{1}{2}a\cdot a}\)
=>\(\dfrac{5}{4}a^2-HD^2=a^2\cdot\dfrac{-1}{2}=\dfrac{-1}{2}a^2\)
=>HD^2=7/4a^2
=>\(HD=\dfrac{a\sqrt{7}}{2}\)
\(SD=\sqrt{SH^2+HD^2}=\sqrt{\dfrac{7}{4}a^2+\dfrac{1}{4}a^2}=a\sqrt{2}\)
Vì SA^2+AD^2=SD^2 và AS=AD
nên ΔASD vuôg cân tại A
(SD;BC)=(DS;DA)=góc SDA=45 độ