Ta có : \(\frac{a+b}{c+d}\) = \(\frac{b+c}{d+a}\)
Cộng 1 vào mỗi tỉ só ta được \(\frac{a+b+c+d}{c+d}\) = \(\frac{a+b+c+d}{a+d}\)
- Nếu a+b+c+d khác 0 thì c+d = a+d nên a=c
- Nếu a+b+c+d = 0 thì bài toán được chứng minh ( xảy ra được a+b+c+d = 0 ; chẳng hạn a=1; b=2; c=3; d=-6)
nếu a+b+c+d khác 0 thì ta có
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)
a+b=b+c
—>a=c
còn cm a+b+c+d=0 thì dễ oy bn nha