a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: AB>AC
nên \(\widehat{ACM}>\widehat{ABM}\)
mà \(\widehat{ABM}=\widehat{DCM}\)
nên \(\widehat{ACM}>\widehat{DCM}\)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: AB>AC
nên \(\widehat{ACM}>\widehat{ABM}\)
mà \(\widehat{ABM}=\widehat{DCM}\)
nên \(\widehat{ACM}>\widehat{DCM}\)
Cho tam giác ABC .Gọi M là trung điểm của BC.Trên tia đối tia MA,lấy điểm D sao cho MA=MD
a)Chứng minh : Tam giác AMB=tam giác DMC
b)Chứng minh AC//BD
c)Trên nửa mp bờ AD ko chứa điểm B vẽ tia Ax//BC. Trên tia Ax lấy điểm H sao cho AH=BC. CM h,c,d thẳng hàng
Cho tam giác ABC có M là trung điểm của BC . Trên tia đối của MAlấy D sao cho M là trung điểm của AD . CMR:
a, tam giác : AMB=DMC
b,AC=BD
c, tam giác ACD=BDA
d,đoạn thẳng đi qua M, vuông góc với AC thì vuông góc với BD
e, E và F lần lượt là trung điểm của AB và CB
Cho tg ABC ; AB = 9cm ; AC = 12cm ; BC = 15cm.
a) C/m rằng tg ABC vuông
b) Vẽ trung tuyến AM .Từ M vẽ MH vuông góc với AC .Trên tia đối của tia MH lấy điểm K sao cho MK = MH.
C/m : tg MHC = tg MKB.
c) Gọi G là giao điểm của BH và AM .Gọi I là trung điểm của AB .C/m rằng: I , G , C thẳng hàng.
Cho tam giác ABC,Eva M lần lượt là trung điểm của AB,BC.Trên tia đối của MA lấy điểm D sao cho MD=MA,trên tia đối của ED lấy điểm F sao cho ED=EF
a, chứng minh tam giác AMC=tam giac DMB
b,chứng minh AC//BD
c, chứng minh A là trung điểm của đoạn thẳng FC
Cho tam giác ABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=AD
a)C/m tam giác ABM = tam giác DCM
b)C/m AB // DC
c)Kẻ BE vuông góc AM (E thuộc BC), CF vuông góc DM(F thuộc DM)
C/m M là trung điểm của đoạn thẳng EF
Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy
1) Cho góc xOy khác góc bẹt. Trên tia Ox lấy 2 điểm A và B, trên tia đối Oy lấy 2 điểm C và D sao cho OA = OC, OB = OD. Gọi I là giao điểm của 2 đoạn thẳng AD và BC. CMR:
a) BC = AD
2)Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD
a) CMR tam giác ABM = tam giác DCM
b) CMR AB//CD
c) CMR AM vuông góc với BC
Nhớ vẽ hình và viết giả thiết và kết luận nha
Giúp mình với Mình cần gấp
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
1. Cho tg ABC cân tại A , đường cao AH .Biết AB =5cm ; BC = 6cm.
a) Tính độ dài các đoạn thẳng BH , AH
b) Gọi G là trọng tâm của tg ABC . C/m rằng ba điểm A , G , H thẳng hàng .
2. Cho tg ABC cân tại A . Gọi M là trung điểm của cạnh BC .
a) C/m : tg ABM = tg ACM
b) Từ M vẽ MH vuông góc với AB và MK vuông góc với AC , C/m BH = CK.
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I.C/m tg IBM cân.
3. Cho tg ABC cân tại A ( góc A < 90 độ) , vẽ BD vuông góc với AC và CE vuông góc AB .Gọi H là giao điểm của BD và CE.
a) C/m : tg ABD = tg ACE
b) C/m tg AED cân
c) C/m AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.C/m góc ECB = góc DKC.
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!!!!!!!!!!!!