Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Dương

cho tập hợp A=\(\left\{x\in R|2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\right\}\) số giá trị nguyên m \(\in\) (0;10] để tập A có đúng 3 phần tử là?

Nguyễn Việt Lâm
24 tháng 10 2020 lúc 22:59

\(\Leftrightarrow2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\) có 3 nghiệm

\(\Leftrightarrow\left(x^2-2x+m\right)\left(2x^2-6x-m\right)=0\) có 3 nghiệm

Xét 2 pt: \(x^2-2x+m=0\) (1) và \(2x^2-6x-m=0\) (2)

Để pt đã cho có 3 nghiệm thì:

TH1: (1) có 2 nghiệm pb và (2) có nghiệm kép khác 2 nghiệm của (1)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m=0\end{matrix}\right.\) \(\Rightarrow m=-\frac{9}{2}\)

Thay \(m=-\frac{9}{2}\) vào (1) thấy 2 nghiệm của (1) thỏa mãn khác nghiệm của (2)

TH2: (1) có nghiệm kép và (2) có 2 nghiệm pb khác nghiệm của (1)

\(\Leftrightarrow\left\{{}\begin{matrix}1-m=0\\9+2m>0\end{matrix}\right.\) \(\Rightarrow m=1\)

Thay \(m=1\) vào (2) ta cũng thấy thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m>0\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{9}{2}< m< 1\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\)

Gọi \(x_0\) là nghiệm chung của (1) và (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-2x_0+m=0\\2x_0^2-6x_0-m=0\end{matrix}\right.\) \(\Rightarrow3x_0^2-8x_0=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=\frac{8}{3}\end{matrix}\right.\)

- Với \(x_0=0\Rightarrow m=0\)

- Với \(x_0=\frac{8}{3}\Rightarrow m=-\frac{16}{9}\)

Vậy \(m=\left\{-\frac{9}{2};1;0;-\frac{16}{9}\right\}\)

Có đúng 1 giá trị nguyên của m là \(m=1\) thỏa mãn thuộc (0;10)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn thương
Xem chi tiết
byun aegi park
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
Khanh7c5 Hung
Xem chi tiết
Đặng Nguyễn Xuân Ngân
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
TFBoys
Xem chi tiết
SA Na
Xem chi tiết
Lê Thành Vinh
Xem chi tiết