Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC (E ϵ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng:
a) ΔABD = ΔEBD
b) ΔABE là tam giác cân
c) DF = DC
Cho tam giác ABC ( AB < BC ) , kẻ phân giác AD . Lấy E thuộc AC sao cho AB = AE . Lấy F thuộc tia đối của tia BA sao cho BF = EC . Chứng minh: a) tam giác ABD = tam giác AED . b) DF = DC . c) F, D, E thẳng hàng. d) AD là đường trung trực của FC.
Ai giải được mình cho 5 sao
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a) BD là đường trung trực của AE
b) DF = DC
c) AD < DC
d) AE // FC
Cho ∆ ABC vuông tại A . Đường phân giác BD (D thuộc BC) . Gọi K là giao điểm BA và HD. a) Chứng minh AD =HD . So sánh AD và DC b) Góc DKC = góc DCK c) Chứng minh: BD vuông KC.
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D thuộc AC). Chứng minh rằng:
a) Tam giác ABD = tam giác EBD từ đó suy ra AD = ED
b) BD là đg trung trực của đoạn thẳng AE và AD < DC
c) Ba điểm E ,D, F thẳng hàng
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M.
a) Chứng minh rằng: và tam giác AED cân.
b) Chứng minh: EM>ED c) Qua điểm D kẻ đường thẳng song song với BE cắt AC tại F. Gọi K là giao điểm của DE và HF. Chứng minh rằng KD = 2KE.
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Qua điểm E kẻ đường thẳng song song với BD cắt AC tại F Gọi K là giao điểm của DE và HF. Chứng minh rằng: KE=2KD
Cho tam giác ABC vuông tại a đường cao AH .trên tia BC lấy D sao cho BD = BA .đường vuông góc với BC tại D cắt AC tại E , cắt ba tại F. Chứng minh: a) tam giác ABE = tâm giác DBE b) BE là đường trung trực của đoạn AD c) HD < DC