Thể tích của hình tròn xoay được tạo ra bằng thể tích của hình trụ có \(R=h=a\) trừ thể tích hình nón có \(R=a;h=a;l=a\sqrt{2}\)
\(\Rightarrow V=\pi.R^2h-\frac{1}{3}\pi R^2h=\frac{2}{3}\pi R^2h=\frac{2}{3}\pi a^3\)
Thể tích của hình tròn xoay được tạo ra bằng thể tích của hình trụ có \(R=h=a\) trừ thể tích hình nón có \(R=a;h=a;l=a\sqrt{2}\)
\(\Rightarrow V=\pi.R^2h-\frac{1}{3}\pi R^2h=\frac{2}{3}\pi R^2h=\frac{2}{3}\pi a^3\)
Trong không gian cho tam giác vuông OIM vuông tại I, góc OMI bằng 60 độ và cạnh IM bằng 2a. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay có diện tích xung quanh là:
Trong không gian cho tam giác vuông OIM vuông tại I, góc OMI bằng 60 độ và cạnh IM bằng 2a. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay có diện tích xung quanh là:
1>cho S.ABC có tam giác ABC vuông cân tại A, AB=a và SH vuông (ABC) với H là đối xứng của A qua B, SH = 2a .Tính bán kính mặt cầu ngoại tiếp S.ABC và thể tích khối cầu ngoại tiếp đó
Cho tam giác cân MBC có BMC = 120 độ và đường cao MH = acăn2
Trên đường thẳng vuông góc với mặt phẳng (MBC) tại M lấy 2 điểm A và D về 2 phía của điểm M sao cho
tam giác ABC đều và tam giác DBC vuông cân tại D.
Tính thể tích khối cầu ngoại tiếp tứ diện ABCD
thầy vẽ hình giúp em với ạ.
Cho lăng trụ ABCA'B'C' có tam giác ABC vuông tại A,AB=a,AC=a√3.Góc giữa đường thẳng A'C và mặt phẳng (ABC) bằng 30•.Gọi N trung điểm BB'.Tính theo a thể tích lăng trụ ABCA'B'C' và cosin của góc giữa AB và CN
1)Cho khối lập phương có độ dài đường chéo bằng \(\sqrt{3}\)cm. Tính thể tích khối lập phương đó
2) Cho hình khối lăng trụ tam giác ABC.A'B'C' có thể tích bằng 1. TÍnh thể tích khối chóp A'.ABC' theo V
3)Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tamiacs đều cạnh a và đường thẳng A'C tạo với mặt phẳng (ABB'A') một góc 300 . Tính thể tích khối lăng trụ ABC.A'B'C'
4)Cho hình chóp tam giác S.ABC có ASB=CSB=600 , SA=SB=SC=2a. Tính thể tích khối chóp S.ABCD
5) Cho hình chóp S.ABCD có SA vuông góc với (ABCD), SB=\(a\sqrt{5}\), ABCD là hình thoi cạnh a, góc ABC = 600 . Tính thể tích khối chóp S.ABCD
HELP ME!!!!!
1> Cho hình chóp S.ABC có đáy là tam giác cân, AB = AC = a, (SBC) vuông góc với (ABC) và SA = SB =a. Cmr ∆ SBC vuông. Biết SC= x, tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABC
2> Cho lăng trụ đứng tam giác ABC.A’B’C’ biết AA’ = AB = a, AC = 2a và góc BAC = 60⁰. Gọi M = A’C ∩ AC’. Tính thể tích tứ diện MBB’C và tính bán kính mặt cầu ngoại tiếp hình lăng trụ.
Giúp vs t đang cần gấp ạ: Cho hình lăng trụ ABC.A’B’C’ có đáy ABC có đáy ABC là tam giác vuông cân tại B; AB = a, góc ACB = 30 độ, M là trung điểm cạnh AC. Góc giữa cạnh bên và mặt đáy của lăng trụ bằng 60 độ. Hình chiếu vuông góc của đỉnh A’ lên mặt phẳng (ABC) là trung điểm H của BM. Tính theo a thể tích khối lăng trụ ABC.A’B’C’và khoảng cách từ điểm C’ đến mặt phẳng (BMB’).
cắt một hình nón bằng một mặt phẳng đi qua trục của nó, ta được thiết diện là một tam giác đều cạnh \(2a\sqrt{2}\) . Diện tích xung quanh của khối nón là: