Lời giải:
Xét tam giác $HEB$ và $HDC$ có:
$\widehat{EHB}=\widehat{DHC}$ (đối đỉnh)
$\widehat{HEB}=\widehat{HDC}=90^0$
$\Rightarrow \triangle HEB\sim \triangle HDC$ (g.g)
$\Rightarrow \frac{HE}{HB}=\frac{HD}{HC}\Rightarrow HE.HC=HB.HD$
Từ kết quả này kết hợp với định lý Pitago:
$BC^2=BE^2+EC^2=HB^2-EH^2+EC^2=HB^2-EH^2+(EH+HC)^2$
$=HB^2+HC^2+2EH.HC=HB^2+HC^2+EH.HC+HB.HD=HB(HB+HD)+HC(HC+EH)$
$=HB.BD+CH.EC$
(đpcm)