a: Xét (O) có
ΔCDB nội tiếp
CB là đường kính
Do đó: ΔCDB vuông tại D
=>CD vuông góc với AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE vuông góc với AC
a: Xét (O) có
ΔCDB nội tiếp
CB là đường kính
Do đó: ΔCDB vuông tại D
=>CD vuông góc với AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE vuông góc với AC
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính AC nó cắt cạnh AB ,BC theo thứ tự ở H và K
a)Chứng minh CH vuông góc AB, AK vuông góc AC
b) gọi I là giao điểm của AK và CH chứng minh BI vuông góc AC
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt tại AB và AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD chứng minh H là trực tâm của tam giác ABC Từ đó suy ra AH vuông góc với BC
Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E
a) Chứng minh rằng \(CD\perp AB,BE\perp AC\)
b) Gọi K là giao điểm của BE, CD. Chứng minh rằng AK vuông góc với BC
Cho đường tròn tâm O đường kính AB; trên nửa đường tròn lấy điểm C sao cho AC>AB, qua C dựng đường thẳng vuông góc với OC cắt đường thẳng AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD ( K thuộc CD); đường kính CH cắt đường thẳng BK tại E. a) Chứng minh 4 điểm C,H,B,K cùng thuộc 1 đường tròn. b) Cm KH//AC. c) Cm BH.AD=AH.BD
cho tam giác ABC nội tiếp đường tròn (O), từ B vẽ đường vuông góc AB tại B cắt (O) tại D
a) Chứng tỏ AD là đường kính của (O)
b) Tính góc ACD
c) Gọi H là trực tâm tam giác ABC, tứ giác BHCD là hình gì? Vì sao ?
Cho ( O;R) đường kính AB lấy điểm C thuộc ( O;R) sao cho AC= R. a) Chứng minh tam giác ABC vuông. b) Tính BC theo R và tính số đo góc A, góc B
cho đường tròn (O) đường kính A.Trên đường tròn lấy điểm C sao cho AC<BC (C khác A).các tiếp tuyến tại B và C của đương tròn tâm O cắt nhau ở điểm D.AD cắt đường tròn tâm O tại E (E khác A).DO cắt BC tại F
a) Chứng minh BC vuông góc OD
b) chứng minh DF.DO=DE.DA
Xét tính đúng - sai của mỗi khẳng định sau :
Cho tam giác ABC nội tiếp đường tròn (O)
a) Nếu BC là đường kính của đường tròn thì \(\widehat{BAC}=90^0\)
b) Nếu AB = AC thì AO vuông góc với BC
c) Nếu tam giác ABC không vuông thì điểm O nằm bên trong tam giác đó
Cho ABC vuông tại A, đường cao AH. Vẽ đường tròn (I) có đường kính HB cắt
cạnh AB tại D. Vẽ đường tròn (K) đường kính HC cắt AC tại E.
a) Chứng minh tứ giác ADHE là hình chữ nhật.
b) Chứng minh AD.AB AE.AC .
c) Cho AB 3cm,BC 5cm . Tính DE và diện tích tứ giác DEKI.