cho tam nhọn abc (ab nhỏ hơn ac) các đương cao ad be cf cắt nhau tại h
1.chứng minh tam giác eab đồng dạng với tam giác afc và ae.ac=af.ab
2.gọi I là trung điểm của canh BC .Đường thẳng đi qua I và vuông góc với IH cắt AC ,AH,AB lần luotj tại M,K,N
A.chứng minh AM.BI-BH.AK
B.chứng minh rằng NK/EI=MN/BC
Cho tam giác ABC có ba góc nhọn và ba đường cao AD, BE, CF cắt nhau tại H.
a)So sánh: HBD và CAD và chứng minh DB.DC=DA.DH.
b) CHứng minh: EA.EC=EB.EH.
c)CM: FA.FB= FC.FH.
Cho tam giác ABC, ba duong cao AD, BE, CF cat nhau tai H.
a, Cm Tam giac AFH dong dang Tam giac ADB.
b, Cm BH*HE=CH*HF.
c, Chung minh tam giac BFH dong dang tam giac CFA .
d, Tam giac BFD dong dang tam giac BCA.
e, Goi M la giao diem cua DF, AC. Cm MA*MC=MF*MD.
Tam giác ABC nhọn ( 8 – 2 – 6 ) . Gọi H là giao điểm của hai đường cao BE và CF ; cho biết HF = 2cm ; HC = 6 cm và
BH = 5 cm .
1 ) Chứng minh : \(\dfrac{AE}{AB}\)=\(\dfrac{AF}{AC}\)
2 ) Chứng minh : hệ thức HB . EH = HF . HC và tính HE ?
tam giác ABC có 3 góc nhọn,BE và AD là đường cao tam giác ABC CH cát AB tại F.có AC = 5cm,AD = 3cm.tính tỷ số \(\dfrac{DB}{DH}\)
Cho đoạn thẳng BC cố định . Điểm A di động sao cho tam giác ABC có 3 góc nhọn. Các đường cao AD , BE ,CF và H là trực tâm của tam giác ABC .
- Xác định vị trí của điểm A để AD.HD đạt giá trị lớn nhất
- Chứng minh AB+BC+AC>3/2(HA+HB+HC)
Cho tam giác nhọn ABC.Các đường cao AD và BE cắt nhau tại H.Đường thẳng vuông góc với AB tại A cắt BE ở K.Chứng minh tam giác EAK đồng dạng tam giác ECH
Bài 1
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
Bài 2/
Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.
1/ Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.
Chứng Minh: \(\frac{IE}{IF}=\frac{KB}{KC}\)
cho tam giác abc vuông tại a, đường cao ah. a) Chứng minh: ah.bc = ab.ac, b) be là tia phân giác góc abc, be cắt ah tại d. chứng minh. tam giác abd đồng dạng tam giác cbe