\(DC=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
góc DBH=góc DAC
=>ΔDBH đồng dạng với ΔDAC
=>DB/DA=DH/DC
=>DB/DH=DA/DC=3/4
\(DC=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
góc DBH=góc DAC
=>ΔDBH đồng dạng với ΔDAC
=>DB/DA=DH/DC
=>DB/DH=DA/DC=3/4
cho tam nhọn abc (ab nhỏ hơn ac) các đương cao ad be cf cắt nhau tại h
1.chứng minh tam giác eab đồng dạng với tam giác afc và ae.ac=af.ab
2.gọi I là trung điểm của canh BC .Đường thẳng đi qua I và vuông góc với IH cắt AC ,AH,AB lần luotj tại M,K,N
A.chứng minh AM.BI-BH.AK
B.chứng minh rằng NK/EI=MN/BC
Cho tam giác ABC vuông tại A có AB=6cm AC=8cm,AD là tia phân giác của góc BAC(D thuộc BC)
a)Tính tỉ số DB/DC và độ dài các đoạn thẳng BC,DB,DC
b)Từ D kẻ DE vuông góc với AB tại E(E thuộc AB).Tính độ dài DE,AE và diện tích tứ giác AEDC
Cho tam giác ABC vuông tại A, đường cao AD.
Tìm AD ? Biết AB=6cm AC= 8cm
Tam giác ABC nhọn ( 8 – 2 – 6 ) . Gọi H là giao điểm của hai đường cao BE và CF ; cho biết HF = 2cm ; HC = 6 cm và
BH = 5 cm .
1 ) Chứng minh : \(\dfrac{AE}{AB}\)=\(\dfrac{AF}{AC}\)
2 ) Chứng minh : hệ thức HB . EH = HF . HC và tính HE ?
cho tam giác abc vuông tại a, đường cao ah. a) Chứng minh: ah.bc = ab.ac, b) be là tia phân giác góc abc, be cắt ah tại d. chứng minh. tam giác abd đồng dạng tam giác cbe
cho tam giác ABC nhọn, AB<AC .Trên cạnh AB lấy điểm D(D khác A và B),trên cạnh AC lấy điểm E sao cho góc ADE = ACB
a) CM : tam giác ADE đồng dạng tam giác ACB
b)Gọi i là giao điểm của BC và DE. CM: IB.IC=ID.IE
c)Lấy M là trung điểm BC . CM \(\dfrac{AD.AB}{AE.AM}\) =2
Cho tam giác nhọn ABC có góc C = 40 độ. Vẽ hình bình hành ABCD. Gọi AH, AK theo thứ tự là các đường cao của các tam giác ABC, ACD
a) Chứng minh rằng tam giác AKH đồng dạng với tam giác BCA
b) Tính số đo góc AKH
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HCA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HBA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!