cho tam nhọn abc (ab nhỏ hơn ac) các đương cao ad be cf cắt nhau tại h
1.chứng minh tam giác eab đồng dạng với tam giác afc và ae.ac=af.ab
2.gọi I là trung điểm của canh BC .Đường thẳng đi qua I và vuông góc với IH cắt AC ,AH,AB lần luotj tại M,K,N
A.chứng minh AM.BI-BH.AK
B.chứng minh rằng NK/EI=MN/BC
Cho tam giác nhọn ABC . Các đường cao AD,BE và CF cắt nhau tại h
a)CM : BH . BE = BDBC =BFBA
b)CM : BC^2 = BH . BE +CH . CF
Bài 1
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
Bài 2/
Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.
1/ Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.
Chứng Minh: \(\frac{IE}{IF}=\frac{KB}{KC}\)
Tam giác ABC nhọn ( 8 – 2 – 6 ) . Gọi H là giao điểm của hai đường cao BE và CF ; cho biết HF = 2cm ; HC = 6 cm và
BH = 5 cm .
1 ) Chứng minh : \(\dfrac{AE}{AB}\)=\(\dfrac{AF}{AC}\)
2 ) Chứng minh : hệ thức HB . EH = HF . HC và tính HE ?
cho tam giác abc vuông tại a, đường cao ah. a) Chứng minh: ah.bc = ab.ac, b) be là tia phân giác góc abc, be cắt ah tại d. chứng minh. tam giác abd đồng dạng tam giác cbe
giúp mình với
Cho tam giác ABC nhọn, ba đường cao CM, BK, AE cắt nhau tại I. Chứng minh:
a) IM.IC=IK.IB
b) IM.IC=IA.IE
c) AK.AC=AI.AE
d) AM.AB=AK.AC
e) BM.BA=BE.BC
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh ABC đồng dạng với HBA và AB2 = BH.BC
b) Chứng minh.tam giác HAB đồng dạng với tam giác HCA, từ đó hãy tính AH nếu HC=9cm và HB=4cm
c) Tia phân giác của góc ABC cắt AH, AC theo thứ tự tại M và N.
tam giác ABC có 3 góc nhọn,BE và AD là đường cao tam giác ABC CH cát AB tại F.có AC = 5cm,AD = 3cm.tính tỷ số \(\dfrac{DB}{DH}\)
Cho tam giác ABC vuông tại A, có đường cao AD.
a) Chứng minh tam giác ABD đồng dạng với tam giác CBA.
b) Chứng minh DA2 = DB.DC
c) Vẽ DE vuông góc với AB tại E, vẽ DF vuông góc với AC tại F, AD cắt EF tại I. Chứng minh diện tích tam giác CIA bằng diện tích tam giác CID.
d) Chứng minh: \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=1\)
mọi người giúp mình câu cuối nha