Sửa đề: Trên cạnh NP lấy điểm I sao cho MN=NI
a) Xét ΔMHN và ΔIHN có
NM=NI(gt)
\(\widehat{MNH}=\widehat{INH}\)(NH là tia phân giác của \(\widehat{MNI}\))
NH chung
Do đó: ΔMHN=ΔIHN(c-g-c)
b) Ta có: ΔMHN=ΔIHN(cmt)
nên MH=IH(hai cạnh tương ứng)
Sửa đề: Trên cạnh NP lấy điểm I sao cho MN=NI
a) Xét ΔMHN và ΔIHN có
NM=NI(gt)
\(\widehat{MNH}=\widehat{INH}\)(NH là tia phân giác của \(\widehat{MNI}\))
NH chung
Do đó: ΔMHN=ΔIHN(c-g-c)
b) Ta có: ΔMHN=ΔIHN(cmt)
nên MH=IH(hai cạnh tương ứng)
Cho \(\Delta\)MNP (MN < MP) có phân giác của góc M cắt NP tại A. Trên cạnh MP lấy điểm B sao cho MN = MB.
a) Chứng minh AN = AB và NB \(\bot\) MA.
b) Trên tia đối của tia NM lấy điểm C sao cho CN = BP. Chứng minh: NB // CP.
c) Chứng minh ba điểm B, A, C thẳng hàng.
GIÚP MK VỚI, KO CẦN VẼ HÌNH + CHỈ LÀM CÂU B VÀ C + KO SỬ DỤNG KIẾN THỨC TAM GIÁC CÂN
Cho tam giác MNP (MN<MP) có phân giác của góc M cắt NP tại A. Trên cạnh MP lấy điểm B sao cho MN=MB
a) Chứng minh AN = AB
b) Chứng minh NB vuông góc với MA
c) Trên tia đối của tia NM lấy điểm C sao cho CN =BP. Chứng minh NB//CP.
d) Chứng minh ba điểm B, A, C thẳng hàng.
Giúp mình với nhé! ;)
Cho tam giác ABC vuông tại A AB bé hơn AC tia phân giác của góc ABC cắt AC tại D. lấy điểm E trên cạnh BC sao cho be = AB. a) chứng minh tam giác ABD bằng tam giác ABD. b) Chứng minh DE vuông góc với AC. c) tia ED cắt BA tại M chứng minh EC = AM
cho tam giác MNP có MN = MP và tia phân giác của góc M cắt BC tại H
a, C/m : tam giác MNH = tam giác MPH
b, C/m : MH vuông góc với NP
c, Vẽ HD vuông góc MN ( D thuộc MN) và HE vuông góc với MP(e thuộc MP) c/m DE // NP
Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho BM=AB.
Vẽ tia phân giác BD ( D thuộc cạnh AC ) của góc B, BD cắt AM tại H. Chứng minh rằng :
a) ∆ABH=∆MBH
b) Tia DB là tia phân giác của góc ADM
c) Kéo dài DM cắt AB tại k. Chứng minh AK=MC và BD vuông góc CK.
Cho tam giác ABCvuông tại A. Tia phân giác của góc B cắt cạnh AC tại E, trên cạnh BC lấy điểm F sao cho BF = BA.Câu 1:Chứng minh ABEFBE .Câu 2:Chứng minh EF vuông góc với BC.Câu 3:Từ điểm A kẻ AH vuông góc BC ( H thuộc BC). Chứng minh AH // EF.
Cho ΔMNP có MN < MP, Trên cạnh MP lấy điểm A sao cho MN = MA. Gọi B là trung điểm của đoạn NA.
a) Chứng minh ΔMNB = ΔMAB.
b) Tia MB cắt cạnh NP tại D. Chứng minh ND = DA.
c) Trên tia đối của tia NM lấy điểm E sao cho NE = AP. Chứng minh 3 điểm A, D, E thẳng hàng.
Giúp mk với ạ !
Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt cạnh AC tại E, trên cạnh BC lấy điểm F sao cho BF=BA.
b)Chứng minh EF vuông góc với BC. c)Trên tia đối của tia EF lấy M sao cho EM=EC.Chứng minh B,A,M thẳng hàngo l m . v n