Cho tam giác ABC. Trên cạnh AB lấy điểm D, cạnh AC lấy điểm E sao cho BD = CE. Gọi M, N, P, Q lần lượt là trung điểm của BC, CD, DE, EB.
a) Tứ giác MNPQ là hình gì?
b) Phân giác góc A cắt cạnh BC tại F. Chứng minh rằng PM song song với AF.
c) Đường thẳng QN cắt AB và AC lần lượt ở I và K. Tam giác AIK là tam giác gì?
Cho tam giác ABC. Trên các cạnh AB,AC lấy D,E sao cho BD=CE. Gọi M,N,I,K lần lượt là giao điểm của DE,BC,BE,CD.
a, Tứ giác MINK là hình gì ? vì sao ?
Gọi G,H lần lượt là giao điểm của IK với AB,AC. chứng minh tam giác AGH cân
cho tam giác ABC trên AB lấy điểm D , trên AC lấy điểm E sao cho BD = CE . Gọi M,N,P,Q lần lượt là trung điểm của các cạnh BC, CD, DE, và EB .
a) tứ giác MNPQ là hình gì b) phân giác của góc A cắt BC tại F . chứng minh PM/AF c) Đường thẳng QN cắt AB và AC tại I và K. Tam giác AIK là tam giác gì vì sao1)Cho góc xAy khác góc bẹt. trên cạnh Ox lấy hai điểm B và D, trên cạnh Ay lấy hai điểm C và E sao cho \(\frac{AD}{BD}\)= \(\frac{11}{8}\)và AC= \(\frac{3}{8}\)CE.
a) Chứng minh BC//DE
b) Biết BC= 3cm. Tính DE
2) Cho hình thang ABCD (AB//CD) có AB= 14cm, CD= 35cm, AD= 17,5cm. trên cạnh AD lấy sđiểm E sao cho DE =5cm. Qua E vẽ đường thẳng song song với AB cắt BC ở F. Tính độ dài EF.
3) Cho hình thang ABCD. Một cát tuyến d song song với đáy DC cắt AD, BC lần lượt ở M,N. Chứng minh \(\frac{AM}{MD}\)=\(\frac{BN}{NC}\)
4) Cho hình thang ABCD có AB//CD. Gọi O là giao điểm hai đường chéoAC và BD và K là giao điểm của AD và BD. Kẻ đường thẳng KO cắt AB tại M, cắt CD tại N. CMR:
a) \(\frac{MA}{ND}\)=\(\frac{MB}{NC}\)
b) \(\frac{MA}{NC}\)=\(\frac{MB}{ND}\)
c) M là trung điểm của AB; N là trung điểm CD
Bài 2: Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M trên AB, AC.
a) Chứng minh DE = AM.
b) Chứng minh tứ giác BDEM là hình bình hành.
c) Gọi O là giao điểm của BE và DM. Gọi I là trung điểm EC. Chứng minh tứ giac AOMI là hình thang cân.
d) Vẽ đường cao AH của tam giác ABC. Tính số đo góc DHE.
cho tam giác ABC, D là một điểm trên cạnh BC. Qua D kẻ đường thẳng song song với AB cắt AC ở E. Trên cạnh AB lấy điểm F sao cho AF=DE. Gọi I là trung điểm của AD. Chứng minh:
a) DF=AE
b) E và F đối xứng với nhau qua điểm I
cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD a, Tứ giác DEBF là hình gì? b, Chứng minh ba đường thẳng AC,BD,EF đồng quy c, Gọi giao điểm của AC với DE và BF theo thứ tự tại M và N. Chứng minh tứ giác EMFN là hình bình hành d, Tính diện tích EMFN khi biết AC= a, BC=b, AC vuông góc BD
giúp mình phần d với mình cần gấp -_-
Cho tam giác ABC vuông tại A, đường phân giác AD. Vẽ hình vuông MNPQ có M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ; CM và NP. Chứng minh rằng:
a) DE song song với AC
b) DE =DF; AE =AF.
Cho tam giác nhọn ABC (AB<AC) có đường cao AH. Gọi E, D, I lần lượt là trung điểm AB, AC, BC. Gọi M là giao điểm AH và DE, N là giao điểm AN và BM, L là giao điểm AN và BC, P là điểm đối xứng L qua N. O là trung điểm MI
Chứng minh C, O, N thẳng hàng