Cho tam giác đều ABC và điểm M bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm M và vuông góc với BC tại điểm H. Đường thẳng đi qua điểm M và vuông góc với CA tại điểm K. Đường thẳng đi qua điểm M và vuông góc với AB tại điểm T
Chứng minh rằng MH + MK + MT không phụ thuộc vào vị trí của điểm M
Cho tam giác đều ABC cạnh a và điểm M bất kì nằm trong tam giá đó. gọi H, K,T tương ứng là hình chiếu vuông góc của điểm M trên BC, CA,AB. Chứng minh rằng MH + Mk + Mt = \(\dfrac{a\sqrt{3}}{2}\)
Cho tam giác đều ABC cạnh a và điểm M bất kì trong tam giác đó.gọi H,K,T ương ứng là hình chiếu vuông góc của điểm M trên BC,CA,AB.chứng minh rằng MH+MK+MT = \(\dfrac{a\sqrt{3}}{2}\).
Cho tam giác đều ABC cạnh a và điểm M bất kì nằm trong tam giá đó. gọi H, K,T tương ứng là hình chiếu vuông góc của điểm M trên BC, CA,AB. Chứng minh rằng MH + Mk + Mt = \(\dfrac{a\sqrt{3}}{2}\)
a) Cho hai tam giác ABC và DBC. Kẻ đường cao AH của tam giác ABC. Kẻ đường cao DK của tam giác DBC. Gọi S là diện tích của tam giác ABC. Gọi S' là diện tích của tam giác DBC
Chứng minh rằng : \(\dfrac{S'}{S}=\dfrac{DK}{AH}\)
b) Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T
Chứng minh rằng \(\dfrac{MH}{AD}+\dfrac{MK}{BE}+\dfrac{MT}{CF}=\)
cho tam giác ABC vuông tại A, đường cao AH,BC=20cm,AH=8cm. gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB
a, chứng minh tam giác DE đồng dạng với tam giác ABC
b,tính diện tích tam giác ADE
Cho tam giác ABC vuông tại A ( AB<AC) . Gọi I là trung điểm của BC. Qua I vẽ IM⊥ AB tại M và IN⊥AC tại N.
a) Tứ giác AMIN là hình gì ? Vì sao ?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh DK/DC=1/3