a) BI= 1/2 BA+ 1/2 BD
BI= 1/2 BA+ 1/4 BC
BI= 1/2( BA+ 1/2 BC)( 1)
b) MB+ BC+ 2MB+ 2BA=0
3MB= -2BA- BC
BM= 2/3 BA+ 1/3 BC
BM=2/3( BA+ 1/2 BC)( 2)
từ (1) và (2) ta có tỉ lệ => 3 điểm B, I, M thẳng hàng
a) BI= 1/2 BA+ 1/2 BD
BI= 1/2 BA+ 1/4 BC
BI= 1/2( BA+ 1/2 BC)( 1)
b) MB+ BC+ 2MB+ 2BA=0
3MB= -2BA- BC
BM= 2/3 BA+ 1/3 BC
BM=2/3( BA+ 1/2 BC)( 2)
từ (1) và (2) ta có tỉ lệ => 3 điểm B, I, M thẳng hàng
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
Bài 1: Cho 4 điểm A B C D. Chứng minh nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) thì \(\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 2: CMR nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì \(\overrightarrow{AC}=\overrightarrow{BC}\)
Bài 3: Cho tam giác ABC. Lần lượt vẽ các điểm M N P thỏa mãn \(\overrightarrow{AM}=\overrightarrow{BA},\overrightarrow{BN}=\overrightarrow{CB},\overrightarrow{CP}=\overrightarrow{AC}\). Gọi I là một điểm bất kì, chứng minh \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\)\(\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
Cho tam giác ABC đều, độ dài cạnh bằng 1.
a) Tìm tập điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\overrightarrow{MA}-\overrightarrow{MC}\right|\)
b) Tìm tập hợp điểm N thỏa mãn \(\left|\overrightarrow{NA}+2\overrightarrow{NB}\right|=\left|\overrightarrow{NA}-\overrightarrow{NC}\right|\)
c) E là điểm thay đổi trên đường thẳng BC, tìm giá trị nhỏ nhất của \(\left|\overrightarrow{NA}+\overrightarrow{NB}+4\overrightarrow{NC}\right|\)
1. Cho tam giác ABC . Các điểm M,N thỏa mãn : \(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\)
a. Tìm điểm I sao cho \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{O}\)
b. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định
c.gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố định
1. Cho tam giác ABC có 3 trung tuyến là AM, BN, CP. Chứng minh rằng
a) \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC tìm điểm M thỏa mãn:
a) \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{BC}\)
Cho tứ giác ABCD.Gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA và M là 1 điểm tùy ý.Chứng minh:
a,\(\overrightarrow{AF}+\overrightarrow{BG}+\overrightarrow{CH}+\overrightarrow{DE}=\overrightarrow{0}\)
b,\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{ME}+\overrightarrow{MF}+\overrightarrow{MG}+\overrightarrow{MH}\)
c,\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=4\overrightarrow{AK}\) (K là trung điểm FH)
Cho tam giác ABC, M là một điểm trên cạnh BC sao cho MB=2MC
1) Biểu thị \(\overrightarrow{AM}\) theo \(\overrightarrow{AB}\) và\(\overrightarrow{AC}\)
2) Chứng minh \(\overrightarrow{v}=\overrightarrow{NB}+\overrightarrow{NC}-2\overrightarrow{NA}\) không phụ thuộc vào vị trí điểm N. Hãy dựng \(\overrightarrow{AD}=\overrightarrow{v}\)
3) Gọi K là trung điểm cạnh AC, điểm I nằm trên đoạn AM sao cho \(\overrightarrow{AI}=x\overrightarrow{AM}\). Tìm số x để ba điểm B, I, K thẳng hàng.
4) Cho điểm K di động thỏa mãn: \(\overrightarrow{KE}=2\overrightarrow{KA}+2\overrightarrow{KB}-\overrightarrow{KC}\). Chứng minh KE đi qua một điểm cố định
cho tam giác abc với trọng tâm g và i là trung điểm của ac. gọi k thuộc ac sao cho \(\overrightarrow{AK}=x\overrightarrow{AC}\). tìm x để ba điểm b, i, k thẳng hàng
Cho tam giác ABC, M là một điểm thỏa mãn \(\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}\) ,I là trung điểm AM.Phân tích \(\overrightarrow{BI}\) theo các vector \(\overrightarrow{AB},\overrightarrow{AC}\)