Đề thiếu
Vì \(\Delta ABC=\Delta DEF\Rightarrow\left\{{}\begin{matrix}DF=AC=??\\EF=BC=7\left(cm\right)\\\widehat{B}=\widehat{E}=60^0\end{matrix}\right.\)
Đề thiếu
Vì \(\Delta ABC=\Delta DEF\Rightarrow\left\{{}\begin{matrix}DF=AC=??\\EF=BC=7\left(cm\right)\\\widehat{B}=\widehat{E}=60^0\end{matrix}\right.\)
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
cho tam giác DEF có DE bé hớn DF tia phân giác của góc D cắc cạnh EF tại M trên cạnh DF lấy điểm N sao cho DE=DN chứng minh a tam giác DEM bằng tam giác DNM chứng minh b góc DMF lớn hơn góc DME c gọi K là trung điểm của EF trên tia đới của tia KD lấy G sao cho KG=KD chứng minh DF+FG lớn hơn 2FK
Cho tam giác ABC vuông tại A, BC=7cm. Từ A kẻ AH vuôn góc BC (H thuộc BC).
a, tính AB và AC
b, tính chu vi của tam giác ABC
c, cmr: HB=HC
d,tính AH
cho tam giác ABC vuông tại A , góc B = 60 độ . Tia phân giác của góc B cắt AC tại I
a) Tính góc C , góc ABI , góc CBI
b) Trên cạnh BC lấy điểm D sao cho AB= BD . Chứng minh tam giác ABI = tam giác DBI suy ra DI vuông góc với BC
c) Chứng minh D là trung điểm của BC
d) AB cắt DI tại K . Chứng minh tam giác KIC cân
e) Chứng minh AD// KC
g) gọi M là trung điểm của KC . Chứng minh B, I , M thẳng hàng
Điều kiện nào dưới đây suy ra đc t/giác ABC = t/giác DEF ?
A.A=D; B=E; C=F
B.A=D; AB=DE; C=F
C.B=E; AB=DE; BC=EF
D.A=D; AC=DF; BC=EF