cho tam giác ABC vuông tại A , góc B = 60 độ . Tia phân giác của góc B cắt AC tại I
a) Tính góc C , góc ABI , góc CBI
b) Trên cạnh BC lấy điểm D sao cho AB= BD . Chứng minh tam giác ABI = tam giác DBI suy ra DI vuông góc với BC
c) Chứng minh D là trung điểm của BC
d) AB cắt DI tại K . Chứng minh tam giác KIC cân
e) Chứng minh AD// KC
g) gọi M là trung điểm của KC . Chứng minh B, I , M thẳng hàng
a: \(\widehat{C}=30^0\)
\(\widehat{ABI}=\widehat{CBI}=30^0\)
b: Xét ΔBAI và ΔBDI có
BA=BD
\(\widehat{ABI}=\widehat{DBI}\)
BI chung
Do đó: ΔBAI=ΔBDI
Suy ra: \(\widehat{BAI}=\widehat{BDI}=90^0\)
hay DI⊥BC
c: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
mà ID là đường cao
nên D là trung điểm của BC
d: Xét ΔAIK vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIK}=\widehat{DIC}\)
Do đó: ΔAIK=ΔDIC
Suy ra: IK=IC
hay ΔIKC cân tại I
e: Xét ΔBKC có BA/AK=BD/DC
nên AD//KC