Cái này chắc là tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\) theo a nhỉ? :))
Có \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AI}\)
\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\left|\overrightarrow{AI}\right|=2AI\)
Theo đly py-ta-go:
\(AI=\sqrt{\frac{a^2}{4}+AB^2}\)
ta có \(BC=\frac{AC}{2}\Rightarrow AC=2BC=2a\)
\(\Rightarrow AB^2=AC^2-BC^2=4a^2-a^2=3a^2\)
\(\Rightarrow AI=\sqrt{\frac{a^2}{4}+3a^2}=\frac{\sqrt{13}}{2}a\)
Vậy \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{\sqrt{13}}{2}a\)