Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tâm Lê

Cho tam giác ABC vuông tại B, dường cao BH.

a) Chứng minh rằng hai tam giác HBA và HCB đồng dạng và HB²=HC. HA.

b) Gọi M, N lần lượt là hình chiếu vuông góc hạ từ H xuống AB và BC. Chứng mình rắng MN=BH.

c) Lấy 1 là trung diềm HC, K là trung điếm AH. Tứ giác MNIK là hình gì? Vì sao?

d) So sánh diện tích từ giảc MNIK và diện tích tam giác ABC.

Y
26 tháng 5 2019 lúc 21:13

a) + \(\left\{{}\begin{matrix}\widehat{ABH}+\widehat{HBC}=90^o\\\widehat{BCH}+\widehat{HBC}=90^o\end{matrix}\right.\)

\(\Rightarrow\widehat{ABH}=\widehat{BCH}\)

+ ΔHBA ∼ ΔHCB ( g.g )

\(\Rightarrow\frac{HB}{HA}=\frac{HC}{HB}\Rightarrow BH^2=AH\cdot CH\)

b) Tứ giác BMHN có \(\widehat{MBN}=\widehat{BMH}=\widehat{BNH}=90^o\)

=> Tứ giác BMHN là hình chữ nhật

=> MN = BH

c) Gọi O là giao điểm 2 đg chéo hình chữ nhật BMHN

thì OM = ON = OH = OB

\(\Rightarrow\left\{{}\begin{matrix}\widehat{OMH}=\widehat{OHM}\\\widehat{ONH}=\widehat{OHN}\end{matrix}\right.\)

+ ΔAMH vuông tại M, đg trung tuyến MK

=> MK = AK = HK

=> ΔKHM cân tại K \(\Rightarrow\widehat{KMH}=\widehat{KHM}\)

+ Tương tự ta cm đc : \(\widehat{INH}=\widehat{IHN}\)

Do đó : \(\widehat{KMH}+\widehat{HMO}+\widehat{HNO}+\widehat{HNI}=\widehat{KHM}+\widehat{MHO}+\widehat{NHO}+\widehat{NHI}\)\(\Rightarrow\widehat{KMN}+\widehat{MNI}=\widehat{KHI}=180^o\)

=> MK // NI => Tứ giác MNIK là hình thang

d) + MK + NI = HK + HI \(=\frac{1}{2}AC\)

+ Diện tích ΔABC là : \(S_{ABC}=\frac{1}{2}BH\cdot AC\)

+ Diện tích hình thang MNIK là :

\(S_{MNIK}=\frac{1}{2}\left(MK+NI\right)\cdot MN=\frac{1}{2}\cdot BH\cdot\frac{1}{2}AC\)

\(\Rightarrow\frac{S_{MNIK}}{S_{ABC}}=\frac{1}{2}\)


Các câu hỏi tương tự
iem là ling và iem cảm t...
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
kiều yến linh
Xem chi tiết
Big City Boy
Xem chi tiết
nguyễn thị hồng hạnh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết