Luyện tập về ba trường hợp bằng nhau của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Hoàng

Cho tam giác ABC vuông tại A(AB<AC). kẻ AH vuông BC tại H,tia phân giác HAC cắt BC tại D,kẻ DE vuông góc AC tại E.K là giao điểm DE và AH.a, tam giác HDK =tam giác EDC. b, HE song song KC

 

Nguyễn Lê Phước Thịnh
2 tháng 1 2021 lúc 21:07

a) Xét ΔAHD vuông tại H và ΔAED vuông tại E có 

AD chung

\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))

Do đó: ΔAHD=ΔAED(cạnh huyền-góc nhọn)

⇒HD=ED(hai cạnh tương ứng)

Xét ΔHDK vuông tại H và ΔEDC vuông tại E có 

HD=ED(cmt)

\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔHDK=ΔEDC(cạnh góc vuông-góc nhọn kề)

b) Ta có: ΔAHD=ΔAED(cmt)

nên AE=AH(hai cạnh tương ứng)

Xét ΔAEH có AE=AH(cmt)

nên ΔAEH cân tại A(Định nghĩa tam giác cân)

\(\widehat{AEH}=\dfrac{180^0-\widehat{EAH}}{2}\)(Số đo của một góc ở đáy trong ΔAEH cân tại A)(1)

Ta có: ΔHDK=ΔEDC(cmt)

nên HK=EC(hai cạnh tương ứng)

Ta có: AE+EC=AC(E nằm giữa A và C)

AH+HK=AK(H nằm giữa A và K)

mà AE=AH(cmt)

và EC=HK(cmt)

nên AC=AK

Xét ΔACK có AC=AK(cmt)

nên ΔACK cân tại A(Định nghĩa tam giác cân)

\(\widehat{ACK}=\dfrac{180^0-\widehat{CAK}}{2}\)(Số đo của một góc ở đáy trong ΔACK cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AEH}=\widehat{ACK}\)

mà \(\widehat{AEH}\) và \(\widehat{ACK}\) là hai góc ở vị trí đồng vị

nên HE//KC(Dấu hiệu nhận biết hai đường thẳng song song)


Các câu hỏi tương tự
lethien
Xem chi tiết
Đạt Bonclay
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
an do
Xem chi tiết
Nguyễn Thành Hưng
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Hoàng Quốc Bảo
Xem chi tiết
hồng phạm
Xem chi tiết
nguyễn vũ hải đăng
Xem chi tiết