a: AC=20cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
a: AC=20cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
Bài 16: Cho tam giác ABC cân tại A . Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
Chứng minh tam giacs ABD = tam giacs ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh tam giác ADE cân.
Cho tam giác ABC vuông tại A, có AB= 9cm, BC= 15cm. a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC. b) Trên tia đối cua tia AB lấy điểm D sao cho AB=AD. CMR : BC=DC c) Gọi E,F lần lượt là trung điểm cạnh CD,BC; gọi I là giao điểm của BE và AC. Chứng minh D,I,F thẳng hàng.
bài 1: cho tam giác ABC vuông tại A có Ab=9cm BC=15cm
a) tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b) Trên tia đối của tia AB lấy điểm d sao cho A là trung điểm của đoạn thẳng BD. chứng minh tam giác BCD cân
c) E là trung điểm cạnh CD,BE cắt AC ở I (i). chứng minh DI(i) đi qua trung điểm cạnh BC
cho mình xin hình tam giác luôn ạ
Bài 4. Cho tam giác ABC vuông tại A có AB = 6cm, AC =8cm .
a) Tính độ dài cạnh BC? So sánh các góc của tam giác ABC.
b) Tia phân giác của góc ABC cắt AC tại K . Kẻ KH I BC tại H. Chứng minh:
ABAK = ABHK .
c) Trên tia đối của tia AB lấy điểm I sao cho AI = HC .Chứng minh ba điểm 1,K,H
thẳng hang.
d) Chứng minh: AH ||CI
help mik cau d
Cho tam giác ABC vuông tại A có AB=9cm, AC:12cm a, Tính độ dài cạnh BC và so sánh các góc của tam giác ABC b, Tia phân giác của học ABC cách AC tại D. Vẽ DH vuông góc BC(H thuộc BC). Chứng minh AD=HD c, Gọi E là giao điểm của 2 đường thẳng AH và BA. Kéo dài BD cách EC tại I. CM: BI=EC
Cho tam giác ABC a) Cho biết góc A= 80 độ, góc B= 60 độ. So sánh các cạnh của tam giác ABC b) Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. Chứng minh rằng: AB=CD và AB + AC > AD c) Gọi N là trung điểm của đoạn thẳng CD và K là giao điểm của AN và BC. Chứng minh rằng: BC = 3CK
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=AB. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh: tam giác BAE = tam giác BDE. Suy ra: AE = ED.
b) Gọi F là giao điểm của tia DE và tia BA. Chứng minh: tam giác FEC cân.
c) Gọi K là trung điểm của FC. Chứng minh: B, E, K thẳng hàng.
Cho tam giacs MNP cân tại M.Tia phân giác góc M cắt NP tại A
a)Chứng minh tam giác AMN = tam giác AMP và MA vuông góc NP
b)Kẻ AB vuông góc MN, AC vuông góc MP. Chứng minh tam ABC cân
c)Chứng minh BC song song MN và MA vuông góc BC
d)Kể BD vuông góc NP. Gọi E là giao của BD và NP.Chứng minh M là trung điểm của CE
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.