cho tam giác ABC vuông tại A có góc B= 60 độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) CM: tam giác CEF đều
b)vẽ CD vuông góc với EF. CM: tứ giác ABCD là hình thang cân.
Cho tam giác ABC cân tại A. Vẽ BM và CN là 2 đường trung tuyến. a/ Chứng minh: BM = CN b/Chứng minh: Tứ giác BNMC là hình thang cân. c/ Gọi I là giao điểm của BM và CN. Chứng minh: AI vuông góc với MN
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy điểm D, trên tia đối đó của AB lấy điểm E sao cho AD = AE, chứng minh tứ giác BDEC là hình thang cân
Bài 1: Cho tam giác ABC cân tại A. Hai đường phân giác BE và CD. Chứng minh rằng BDEC là hình thang cân có đáy nhỏ bằng cạnh bên.
Cho tam giác DEF cân tại D, các đường cao EN, FM cắt nhau tại H. a) Chứng minh hình thang EMNF là hình thang cân b) Chứng minh tam giác DMH = tam giác DNH c) Chứng minh DH vuông góc với MN
Cho tam giác ABC cân tại A. Lấy điểm M bất kỳ trên AB. Qua M vẽ đường thẳng song
song với BC và cắt AC tại N. Chứng minh tứ giác MNCB là hình thang cân.
Bài 5. Cho AABC cân tại A, vẽ 2 đường cao BE, CF.
a) Chứng minh tam giác AEF cân.
b) Chứng minh tứ giác BFEC là hình thang cân.
c) cho Â: 10° .Tính các góc của hình thang cân đó.
Cho tam giác ABC cân tại A ) < 40+ có BM, CN là hai đường phân
giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân.
b) BE, CF là hai đường cao của tam giác ABC. Chứng minh EMNF là
hình thang cân
Cho tam giác ABC cân tại A . Gọi M,N lần lượt là trung điểm của AB,AC.
Chứng minh: tứ giác MNCB là hình thang cân
Chứng Minh: MN là đường trung bình của tam giác ABC
Câu 1.Cho tam giác ABC cân tại A, kẻ đường phân giác BM và CN (M ∈ AC, N ∈ AB). Chứng minh tứ giác MNBC là hình thang cân
Câu 2.Cho tam giác ABC kẻ đường phân giác BM, trên cạnh AB lấy điểm N sao cho NM=NB. Chứng minh tứ giác MNBC là hình thang cân
Helppp