cho hình bình hành ABCD có AB=AC . gọi I là trung điểm của BC, E là điểm đối xứng của A qua I.
a) Chứng minh ABEC là hình thoi.
b) Chưng minh D, C, E thẳng hàng.
c) Tính số đo góc DAE.
d) Tìm điều kiện của tam giác ADE để tứ giác ABEC trở thành hình vuông.
cho hình bình hành ABCD có AB=AC . gọi I là trung điểm của BC
, E là điểm đối xứng của A qua I.
a) Chứng minh ABEC là hình thoi.
b) Chưng minh D, C, E thẳng hàng.
c) Tính số đo góc DAE.
d) Tìm điều kiện của tam giác ADE để tứ giác ABEC trở thành hình vuông.
ae hãy cíu tui
Cho tam giác vuông ABC tại A ( AB < AC) ,E là trung điểm của BC. Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O giao điểm của AE và DF.
a) Chứng minh tứ giác ADEF là hình chữ nhật
b) Gọi K là điểm đối xứng của E qua D.Chứng minh tứ giác AECK hình thoi
c) Chứng minh rằng ba điểm B,O,K thằng hàng/Kẻ EM vuông góc với AK tại M.Chứng minh rằng DMF = 90 độ
d) Kéo dài BD cắt KC tại I, cho AB = 3cm , AC = 4cm.Tính độ dài KI
C1: Giải pt sau: (có điều kiện) a) |3-2x|= 4x+1 b) |3-5x| = 2x+1 C2: Cho m < n So sánh 2021 - 13m và 2020 - 13n C3: Cho tam giác ABC vuông tại A, đường cao AH phân giác AD, kẻ DK vuông góc AC (K thuộc AC) a) CM tam giác ABC đồng dạng tam giác HAC b) Giả sử AB= 6cm, AC = 8cm. Tính BD C4: 1 ô tô đi từ A -> B với vận tốc trung bình 60km/h lúc trở về vẫn trên quãng đường đó ô tô đi với vận tốc nhỏ hơn vận tốc lúc đi 20km/h nên thời gian lúc về hết nhiều hơn lúc đi 30 phút. Tính độ dài quãng đường AB C5: Cho tam giác ABC vuông tại A biết AB = 15cm, AC = 20cm. Kẻ AH vuông góc BC tại H a) CM: tam giác HBA đồng dạng tam giác ABC b) Vẽ tia phân giác của góc BAH cắt BH tại D c) Trên HC lấy điểm E sao cho HE = HA qua E vẽ đường thẳng vuông góc với BC và cắt AC tại M và qua C vẽ đường thẳng vuông góc với BC cắt theo phân giác của góc MEC tại F. CM: 3 điểm H ,M,F thẳng hàng C6: 1 xe máy khởi hành từ A -> B với vận tốc 35km/h. Sau đó 24 phút trên cùng tuyến đường đó. 1 ô tô xuất phát từ B về A với vận tốc trung bình 45km/h. Biết quãng đường AB dài 142km. Hỏi sau bao lâu kể từ lúc xe máy khởi hành 2 xe gặp nhau?
Cho tam giác ABC vuông tại A có đường cao AH ( H thuộc BC)
a) Chứng minh : tam giác ABH đồng dạng tam giác CBA sau đó suy ra AB2= BH.BC
b) Chứng minh AH2=BH.CH
C) Gọi M là trung điểm của BH, kẻ CK vuông góc với AM tại K, CK cắt AH tại I. Chứng minh IA=IH
Câu 6 (3 điểm) Cho tam giác ABC nhọn có AB < AC. Kẻ 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DABE ∽ DACF và AE. AC = AF. AB
b) Kẻ AH cắt BC tại D. Chứng minh AD vuông góc BC và góc ADF bằng góc ABH
Bài 6: Cho ΔABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Từ M lần lượt kẻ MH
vuông góc với AB tại H, MK vuông góc với AC tại K.
a) Chứng minh tứ giác AKMH là hình chữ nhật
b) Gọi N là điểm đối xứng của M qua K. Chứng minh tứ giác AMCN là hình thoi
c) Gọi P là hình chiếu của H lên AM; O, E, Q lần lượt là trung điểm của HP, PM và
AK. Chứng minh: HE vuông góc với EQ
Cho tam giác ABC có AB<AC. Gọi M,N lần lượt là trung điểm của AB, AC.\
a) Chứng minh tứ giác BMNC là hình thang
b) Vẽ đường cao AE của tam giác ABC. Gọi F là điểm đối xứng của E qua N. Chứng minh tứ giác AECF là hình chữ nhật.
c) Trên tia EB lấy điểm I sao cho AI=AC. Gọi O là giao điểm của MN và AE. Chứng minh ba điểm I,O,F thẳng hàng.
Cho tam giác mnp (mn<mp) đường cao ma. gọi B, C, D lần lượt là trung điểm MN MP và NP.
a) Chứng minh tứ giác NBCP là hình thang
b) Gọi E là điểm đối xứng của A qua B. Chứng minh tứ giác MANE là hình chữ nhật.
c) Chứng minh góc CDB = góc BAN