Cho tam giác ABC vuông tại A . Kẻ đường cao AH , đường trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng BC tại D .
a, Chứng minh AB là tia phân giác của góc DAH
b, Chứng minh BH . CD = BD . CH
Bài 1: Cho tam giác ABC vuông tại A ( AB>AC), AM là đường trung tuyến, kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F.
a) chứng minh: tam giác MBE đồng dạng tam giác MFC
b) Chứng minh: AE.AB=AF.AC
c) Đường cao AH của tam giác ABC cắt EF tại I. Chứng minh: \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Bài 2: Cho E= x2-2x+2022
a) Chúng minh: E>0 với mọi x
b) Tìm GTLN của: A=\(\dfrac{2020}{x^2-2x+2022}\)
Cho tam giác ABC vuông tại A . Kẻ đường cao AH , đường trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng BC tại D
a, Chứng minh AB là tia phân giác góc DAH
b, Chứng minh BH.CD = BD.CH
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH, phân giác BI. Qua C kẻ đường thẳng vuông góc với BI tại D. Gọi E là giao điểm của AB và CD. Gọi F là hình chiếu của D trên BE. Chứng minh: (BD/DE)^2=BF/EF
Cho tam giác ABC vuông tại A (AB<AC), phân giác BD (D thuộc AC). Gọi M là trung điểm của BC.
Đường thẳng MD cắt đường thẳng BA tại N. Qua A kẻ đường thẳng song song với BC cắt NM, NC thứ tự tại P và Q
a) CMR: PA=PQ
b) Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại E. CMR: DA.EB=DC.EA
c) CM: Hai tam giác EBD và NBD có diện tích bằng nhau
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
Cho \(\Delta\)ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD
b)Gọi I là giao điểm của BD và AH. Chứng minh:\(\Delta\)AID cân
c) Qua I kẻ đường thẳng song song với AC cắt BC tại K.Chứng minh:\(\dfrac{HK}{KC}\)=\(\dfrac{HB}{AB}\)
d)Gọi E là giao điểm của AK và I,F là trung điểm của AC.Chứng minh:H,E,F thẳng hàng