tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM
cho tam giác abc vuông tại a đường phân giác bk (k thuộc ac). kẻ ki vuông góc với bc i thuộc bc A chung minh abk=ibkB kẻ đường cao ah cua abc chung minh ai la tia pg cua hac C lấy điểm M thuộc tia AH sao cho AM=AC chứng minh IM vuông góc AC
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
Cho tam giác ABC có ba góc nhọn , đường thẳng AH vuông góc với BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
Chứng minh rằng CA = CD
Cho tam giác ABC, kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Trên tia đối của tia BD, lấy điểm H sao cho BH=AC, trên tia đối của tia CE, lấy điểm K sao cho CK=AB. Chứng minh rằng AH = AK.
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Cho tam giác ABC vuông tại A và có đường phân giác BD. Kẻ đường thẳng DH vuông
góc với BC tại điểm H. Trên tia đối của tia AB lấy điểm K sao cho AK = CH.
1. Chứng minh ba điểm H,D,K thẳng hàng và chứng minh BD vuông góc với KC.
2. (*) Chứng minh rằng 2(AD + AK) > CK.