Cho tam giác ABC vuông tại A, có đường phân giác BD. Kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a) △ABD = △EBD
b) △CDF là tam giác cân
c) E, D, F thẳng hàng và BD ⊥ CF
d) 2(ad+af)>cf
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE \(\perp\) BC (E \(\in\) BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh :
a) \(\Delta\) ABD = \(\Delta\) EBD
b) BD là đường trung trực của đoạn thẳng AE.
c) AD < DC
d) \(\widehat{ADF}\) = \(\widehat{EDC}\) và E, D, F thẳng hàng.
Cho tam giác ABC vuông tại B, AB<BC. tia phân giác góc A cắt BC tại E . trên AC lấy D sao cho AD=AB. tia DE cắt tia AB tại F , G là trung điểm FC. chứng minh
a) tam giác ABE = tam giác ADE
b) AE là trung trực BD
c) DE < EF
d) AG vuông góc CF
Bài 6: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy E sao cho BE=BA. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D. Trên tia đối của tia AB lấy điểm F sao cho AF=EC. CMR:
a) tam giác ABD= tam giác EBD
b) BD là phân giác của góc ABC và BD là trung trực của AE
c) AD<DC
d) 3 điểm E, D,F thẳng hàng
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E ke đường thẳng vuông góc với BC cắt AC tại D. Trên tia đối của tia AB lấy điểm F sao cho AF= EC. Chứng minh rằng:
a) BD là tia phân giác của góc B
b) BD là trung trực của AE
c) AD < DC
d) Ba điểm E,D,F thẳng hàng
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC
Cho tam giác ABC vuông tại A có phân giác BD. Kẻ DE vuông góc với BC tại E. Trân tia đối AB lấy F sao cho AF = CE.
Chứng minh:
a) Tam giác ABD = Tam giác EBD
b) BD là trung trược của AE
c) AD < DC
d) E, D, F thẳng hàng
e) BD vuông góc với CE
f) 2.(AD + AF) > CF