\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AC=\dfrac{4AB}{3}=\dfrac{4.15}{3}=20\left(cm\right)\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Áp dụng hệ thức lượng:
\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=16\left(cm\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AC=\dfrac{4AB}{3}=\dfrac{4.15}{3}=20\left(cm\right)\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Áp dụng hệ thức lượng:
\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=16\left(cm\right)\)
Cho biết cos alpha=1/4 thù giá trị của cotg alpha là 2)tam giác ABC vuông tại A đường cao AH. Cho biết CH=6cm và sinh= √3/2 thì độ dài đường cao là bao nhiêu? 3)tam giác ABC vuông tại A có AB=3cm và BC=5cm thì cotgB+cotgC có giá trị bằng bao nhiêu?
Câu 4: Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. 1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH. 2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D. a) Chứng minh BD là tiếp tuyến của đường tròn (C). b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 PE.QF = EF
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH và O là trung điểm cạnh BC. Đường tròn tâm I đường kính AH cắt AB,AC thứ tự tại M và N. OA và MN cắt nhau tại D.
Cho AB=3 và AC=4 .Tính bán kính đường tròn ngoại tiếp tam giác BMN
Cho tam giác ABC có AB = 5cm, AC = 12cm, BC = 13cm.
a,Chứng minh tam giác ABC⊥ tại A và tính số đo góc B và C
b, Kẻ đường cao AH . Tính độ dài đường cao AH
c.kẻ HE⊥AB tại E ,HF ⊥ AC tại F Chứng minh AE.AB = AF.AC.
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC.
a) Cho AB = 9cm, HB= 4,5cm, Tính các cạnh AC, BC, AH( làm tròn đến độ) ?
b) CMR: a) góc AEF = góc ACB
c) Tính diện tích tam giác FAE biết AH = 2cm, BC = 4cm
d) Qua E kẻ EM vuôg góc FE , qua F kẻ FN vuôg góc FE( M,N thuộc BC). CMR:M, N là trung điểm HB,HC
e) Cho BC cố định. Tìm vị trí điểm A sao cho:
e.1) Độ dài đoạn thẳng FE lớn nhất?
e.2) Diện tích tgiac AFE lớn nhất?
e.3)Diện tích tứ giác AEHF lớn nhất?
+ Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
(ko cần vẽ hình)
Cho tam giác ABC vuông tại A có góc B = 60 độ, đường cao AH.
a) Biết BC = 6cm, hãy tính độ dài các đoạn AB, AC, CH?
b) Trên tia đối của tia BA lấy điểm D sao cho DB=BC, từ A kẻ đường thẳng vuông góc với CD tại K. Chứng minh: \(\dfrac{1}{KD.DC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
c) Chứng minh: \(\tan D=\dfrac{DB}{DC}\)
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH=8 cm,CH=18 cm.Gọi D,E lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AC . Gọi M và N lần lượt là trung điểm của HB và HC . Tính SDENM ?
. Cho ABC vuông tại A; đường cao AH. Biết AC = 4cm, BC = 5cm.
a/ Giải tam giác vuông ABC. ( số đo góc làm tròn đến độ)
b/ Tính AH
c/ Gọi I ,K lần lượt là hình chiếu của H trên AB và AC. Chứng minh: AI.AB = AK.AC