a: Xét tứ giác ABKC có
AC//BK
góc BAC=90 độ
=>ABKC là hình thang vuông
b:
AH=AB*sin60=a*căn 3/2
BH=a/2
Xét ΔHAC vuông tại A và ΔHKB vuông tại H có
góc HAC=góc HKB
=>ΔHAC đồng dạng vớiΔHKB
=>HA/HK=HC/HB
=>HK*HC=HA*HB=a*căn 3/2*a/2=a^2*căn 3/4
a: Xét tứ giác ABKC có
AC//BK
góc BAC=90 độ
=>ABKC là hình thang vuông
b:
AH=AB*sin60=a*căn 3/2
BH=a/2
Xét ΔHAC vuông tại A và ΔHKB vuông tại H có
góc HAC=góc HKB
=>ΔHAC đồng dạng vớiΔHKB
=>HA/HK=HC/HB
=>HK*HC=HA*HB=a*căn 3/2*a/2=a^2*căn 3/4
Cho tam giác ABC vuông tại A( AB>AC) , đường cao AH. Từ B kẻ Bx vuông góc với AB, tia Bx cắt tia AH tại K .
a) Tứ giác ABKC là hình gì ? Tại sao ?
b)Chứng minh : tam giác ABK ~ tam giác CHA.Từ đó suy ra: AB.AC=AK.CH
c) Chứng minh: AH2 =HB .HC
d) Giả sử BH=9cm , HC=16cm . Tính AB,AH
cho ΔABC vuông tại A ( AB <AC), đường cao AH. từ B kẻ tia Bx ⊥AB, tia Bx cắt tia AH tại K
a, tứ giác ABKC là hình j
b, cm ΔABK ∼Δ CHA , từ đó suy ra AB. AC=AK.CH
c, AH2= HB.HC
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh rằng: a) Tam giác BHE đồng dạng tam giác BAH b) Tứ giác AEHF là hình chữ nhật c) AH bình = AF . AC d) CH bình = CF . CA e) Tam giác AEF đồng dạng tam giác ACB
Cho tam giác ABC có ba góc nhọn . Đường cao AF , BE cắt nhau tại H . Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC . Tia Ax và By cắt nhau tại K .
a) Chứng minh : tam giác HAE đồng dạng với tam giác HBF.
b) Chứng minh : CE.CA=CF.CB.
c) Chứng minh góc CFE bằng góc CAB.
d) Nếu tam gics ABC cân tại C, chứng minh rằng ba điểm C, H, K thẳng hàng,
cho tam giác ABC,từ B kẻ tia Bx cắt AC tại M. sao cho góc ABM = góc ACB. chứng minh a) tam giác ABM đồng dạng với tam giác ACB. b)tính AB biết AM=2 cm,CM=2,5 cm
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm, đường cao AH(HBC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
a) Tính độ dài BC, AF, FC. (Làm tròn kết quả đến chữ số thập phân thứ nhất )
b) Chứng minh: rABF đồng dạng với rHBE
c) Chứng minh: rAEF cân
d) Chứng minh: AB.FC = BC.AE
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM