Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huyền Trang

Cho tam giác ABC vuông tại A, đường cao AH sao cho BH = 4cm, CH= 9cm.Gọi D,E lần lượt là hình chiếu của H trên AB,AC.

a, Giải tam giác ABC.

b, Tính độ dài DE

c, Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M,N.Chứng minh M là trung điểm của BH và N là trung điểm CH

d, Tính diện tích tứ giác DENM.

Giúp mình nha! Mik cảm ơn trước hihi

Nguyễn Lê Phước Thịnh
9 tháng 12 2022 lúc 0:08

a: \(AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)

BC=4+9=13cm

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{3\sqrt{13}}{13}\)

nên góc B=56 độ

=>góc C=34 độ

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>AH=DE=6cm

c: góc EDM=90 độ

=>góc EDH+góc MDH=90 độ

=>góc MDH+góc EAH=90 độ

=>góc MDH=góc MHD

=>MH=MD và góc MDB=góc MBD

=>MH=MB

=>M là trung điểm của BH

góc NED=90 độ

=>góc NEH+góc DEH=90 độ

=>góc NEH=góc NHE

=>NE=NH và góc NEC=góc NCE

=>NH=NC

=>N là trug điểm của CH


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
trần thị trâm anh
Xem chi tiết
Big City Boy
Xem chi tiết
Music Hana
Xem chi tiết
lê tường
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
Dưa Trong Cúc
Xem chi tiết
bùi công
Xem chi tiết