Áp dụng HTL:
\(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH^2=BH\cdot CH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AC^2}{CH}=10\left(cm\right)\\AH=\sqrt{6,4\left(10-6,4\right)}=4,8\left(cm\right)\end{matrix}\right.\)
\(S_{ABC}=\dfrac{1}{2}\cdot10\cdot4,8=24\left(cm^2\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=10\left(cm\right)\\AH=4.8\left(cm\right)\end{matrix}\right.\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=24\left(cm^2\right)\)