1/ Cho tam giác ABC vuông tại C , đường cao CH ( H thuộc AB ). Biết AH = 4cm , BH = 9cm
a/ Chứng minh Tam giác ABC đồng dạng tam giác CBH
b/ Chứng minh BC bình phương = BH . BA
c/ Tính diện tích Tam giác ABC
1/ Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM
a/ Chứng minh AH2 = BH . CH
b/ Tính diện tích tam giác AMH , biết BH = 4cm , CH = 9cm
Cho tam giác ABC vuông tại cao AH(H thuộc BC).
a)Chứng minh tam giác đồng dạng với tam giác HAC.
b)Kẻ HI vuông góc AC(I thuộc AC).Chứng minh AH^2=AB.HI.
c)Gọi O là trung điểm của AB,K là giao điểm của OC và HI.Chứng minh K là trung điểm là trung điểm của HI.
d)Cho AH = 8cm,BH=6cm.Tính diện tích tam giác AHC, tam giác ABC
cho tam giác ABC vuông tại A có AB<AC.Kẻ đường cao AH.
a) chứng minh tam giác HAC và tam giác ABC đồng dạng
b)Chứng minh AH^2=HB.HC
c)Gọi D;E lần lượt là trung điểm của AB;BC.cHỨNG TỎ RẰNG CH.CB=4DE^2
Cho tam giác ABC vuông tại A có AB bằng 6 cm,AC bằng 8 cm.Vẽ đường cao AH.Chứng minh: a)tam giác HCA đồng dạng với tam giác ACB b)Tính BC,AH,CH,BH c)Vẽ đường phân giác AD của tam giác ABC Tính BD,CD d)Trên AH lấy điểm K sao cho AK bằng 3,6 cm .Từ K kẻ đường thẳng song song với BC cắt AB và AC lần lượt tại M và N.Tính diện tích tứ giác BMNC đ) Trong tam giác ADB kẻ đường phân giác DE , trong tam giác ADC kẻ đường phân giác DF Cm:EA/EB.DB/DC.FC/FA=1(Hay EA.DB.FC=EB.DC.FA)
Cho DABC vuông tại A, AH là đường cao. Gọi D, E lần lượt là hình chiếu vuông góc của H trên AB, AC.
a) Chứng minh: ∆ABH ∆CAH.
b) Chứng minh: AD.AB = AE.AC = AH2
c) Chứng minh đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE.
Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH
Cho ∆ABC vuông tại A đường cao AH . Kẻ HE vuông góc với AC , Gọi K là giao điểm của AH và EB a)EH //AB b)Chứng minh ∆CAH đồng dạng ∆CBA c) Qua K kẻ đường thẳng // AB cắt AC tại M và cắt BC tại N . Chứng minh KM =KN d) Chứng minh CK đi qua trung điểm của AB
.Bài 5: ABC vuông tại A (AB < AC), đường cao AH. a) Chứng minh: Δ BAC ~Δ BHA . b) Chứng minh: BC.CH = AC2 c) Kẻ HE ⊥ AB và HF ⊥ AC (E ∈ AB; F ∈ AC). Chứng minh: Δ AFE ~Δ ABC . d) Đường thẳng EF cắt đường thẳng BC tại M. Chứng tỏ rằng: MB.MC = ME.MF