xét tam giác BAM có
BA=BM
=> tam giác BAM cân tại B
mà góc B = 60 độ
=> tam giác BAM đều *
=> AM=MB
góc BAC=BAM+CAM
=>góc CAM=BAC-BAM=90-60*=30 độ=góc C
=>tam giác AMC cân tại M
=>AM=MC
mà AM=MB (cmt)
=>AM=1/2BC (đccm)
xét tam giác BAM có
BA=BM
=> tam giác BAM cân tại B
mà góc B = 60 độ
=> tam giác BAM đều *
=> AM=MB
góc BAC=BAM+CAM
=>góc CAM=BAC-BAM=90-60*=30 độ=góc C
=>tam giác AMC cân tại M
=>AM=MC
mà AM=MB (cmt)
=>AM=1/2BC (đccm)
Cho tam giác ABC vuông tại A có góc C=30°. Trên cạnh BC lấy 2 điểm M và N sao cho BM=BA
a, Tính số đo góc B cm tam giác AMB đều
b, Tính góc MAC. Tam giác AMC là tam giác gì vì sao
c, chứng minh AM=1/2
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
cho tam giác ABC cân tại A trên đường thẳng BC lấy 2 điểm MN năm phía ngoài đoạn BC sao cho BM=CN
a) chứng minh tam giác ABM=ACN
b) kẻ BH vuông góc AM , CK vuông góc AN
chứng minh tam giác AHB=tam giác AKC
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE = BD. Đường vuông góc với BC kẻ từ D cắt BA tại M. Đường vuông góc với BC kẻ từ E cắt AC tại N. MN cắt BC tại I.
a) Chứng minh rằng DM = EN
b) Chứng minh IM = IN; BC < MN.
c) Gọi O là giao điểm của đường phân giác của góc A với MN tại I. Chứng minh rằng .
. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh tam giác ABM = tam giác ACN .
b) Chứng minh MN // BC.
c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
Bài 11. Cho tam giác ABC vuông tại A, có B̂ = 60o. Trên cạnh BC lấy điểm D sao cho BA=BD.
Tia phân giác của góc B cắt AC tại I.
a) Chứng minh: Tam giác BAD đều.
b) Chứng minh: Tam giác IBC cân.
c) Chứng minh: D là trung điểm của BC.
Bài 6. Cho tam giác ABC vuông tại A, góc B = 30 độ. Lấy điểm D thuộc cạnh BC sao cho góc BAD bằng 30 độ. Chứng minh rằng:
a) Tam giác ADC là tam giác đều
b) AC = \(\dfrac{1}{2}\)BC