1. Xét \(\Delta ABC\) vuông tại A có :
BC > AC ( ch > cgv) ; BC > AB .
2 . a) + b) Xét \(\Delta ABE\) và \(\Delta HBE\) có :
\(\widehat{BAC}=\widehat{EHB}=90^o;BE:chung;\widehat{ABE}=\widehat{HBE}\)
\(\Rightarrow\) \(\Delta ABE\) = \(\Delta HBE\) ( ch- gn)
\(\Rightarrow\) AB = HB
\(\Rightarrow\) \(\Delta ABH\) cân tại B mà BE là phân giác \(\Rightarrow\) BE là đường cao
\(\Rightarrow\) \(BE\perp AH\)
3.a) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow\) \(\widehat{ABC}+\widehat{BCA}=90^o\Rightarrow\widehat{ACB}=30^o\) ( 1 )
Có BE là phân giác \(\Rightarrow\) \(\widehat{ABE}=\widehat{EBC}=\frac{60^o}{2}=30^o\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\Delta EBC\) cân tại E mà EH là đường cao \(\Rightarrow\) EH là trung tuyến hay BH = CH
b) Xét \(\Delta EHC\) vuông tại H
\(\Rightarrow\) \(EC>HC\left(ch>cgv\right)\)
mà AB = BH ; BH = HC \(\Rightarrow\) \(EC>AB\)